42 research outputs found

    The Free Will Theorem

    Full text link
    On the basis of three physical axioms, we prove that if the choice of a particular type of spin 1 experiment is not a function of the information accessible to the experimenters, then its outcome is equally not a function of the information accessible to the particles. We show that this result is robust, and deduce that neither hidden variable theories nor mechanisms of the GRW type for wave function collapse can be made relativistic. We also establish the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure

    Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits

    Get PDF
    Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants

    Reverse gene–environment interaction approach to identify variants influencing body-mass index in humans

    Get PDF
    Identifying gene–environment (G×E) interactions contributing to human cardiometabolic disorders is challenging. Here we apply a reverse G×E candidate search by deriving candidate variants from promoter–enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in primary human adipocytes. We then test all variants residing in lipid-responsive open chromatin sites in adipocyte promoter–enhancer contacts for interaction effects between genotype and dietary saturated fat intake on body-mass index (BMI) in the UK Biobank. We discover 14 new G×E variants in 12 lipid-responsive promoters, including in well-known lipid-related genes (LIPE, CARM1 and PLIN2) and newly associated genes, such as LDB3, for which we provide further functional and integrative genomic evidence. We further identify 24 G×E variants in enhancers, for a total of 38 new G×E variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can be applied to discover new functional G×E mechanisms in humans

    Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS

    Get PDF
    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes

    Facile Hydrogen Evolution Reaction on WO3Nanorods

    Get PDF
    Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart

    The Physics of the B Factories

    Get PDF

    An inexact multiple-recourse hybrid-fuel management model with considering carbon reduction requirement for a biofuel-penetrated heating system

    No full text
    In China’s goal of reaching carbon neutrality by 2060, the blending-biofuel-based heating technique is being used to reduce CO2 and air-pollutant emissions in existing district heating systems in northern China. This brings a series of new system components, complex interactions, and multiple-polymorphic uncertainties to the heating systems, making it difficult for the heating-system manager to improve the traditional fuel management mode while considering the demands of society, economy, policy, environment, and system operation. To address this issue, this study proposes an inexact multi-recourse hybrid-fuel management model for a biofuel-penetrated district heating system (BDHS). The model minimizes the total heating cost by optimizing the biofuel blending ratio, coal and biofuel deficit-recourse pattern among different heating sources, and selecting the optimal CO2 reduction mode under uncertainties. An application of the model to a BDHS case in Dalian City shows that the 5% biofuel blending ratio is suitable for both main heating sources and that the 0 deficit of high-quality coal can be up to [2.48, 2.69] × 103 tonne with the “cold-degree” changing from “mild” to “cold”. The results also indicate that the proposed model can ensure biofuels and high-quality coal are not overused or misused, but instead consumed responsibly. Additionally, most of the CO2 produced in the pulverized coal boiler is traded, while most of the CO2 sourced from the circulating fluid bed boiler is treated by the chemical absorption equipment. Finally, the model reveals that a high system cost (up to [84.73, 96.83] × 106 CNY) and low CO2 emission (down to [66.13, 78.07] × 103 tonne) can be obtained at a high thermalization coefficient through the tradeoff analysis

    Fabrication of a TiNx/Ni/Au contact on ZnO films with high thermal stability and low resistance

    No full text
    10.1109/TED.2011.2169265IEEE Transactions on Electron Devices58124297-4300IETD

    The stability of aluminium oxide monolayer and its interface with two-dimensional materials

    No full text
    10.1038/srep29221Scientific Reports62922
    corecore