15 research outputs found

    Genetic and biological characterization of a densovirus isolate that affects dengue virus infection

    Full text link
    Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection

    Genetic and biological characterization of a densovirus isolate that affects dengue virus infection

    No full text
    Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection

    Kinome siRNA screen identifies novel cell-type specific dengue host target genes

    No full text
    Submitted by Luciane Willcox ([email protected]) on 2016-10-03T17:59:53Z No. of bitstreams: 1 Kinome siRNA screen.pdf: 4048808 bytes, checksum: bf050acf9f684cf1d04218d8e7424b31 (MD5)Approved for entry into archive by Luciane Willcox ([email protected]) on 2016-10-03T18:30:17Z (GMT) No. of bitstreams: 1 Kinome siRNA screen.pdf: 4048808 bytes, checksum: bf050acf9f684cf1d04218d8e7424b31 (MD5)Made available in DSpace on 2016-10-03T18:30:17Z (GMT). No. of bitstreams: 1 Kinome siRNA screen.pdf: 4048808 bytes, checksum: bf050acf9f684cf1d04218d8e7424b31 (MD5) Previous issue date: 2014-07-18Institut Pasteur Korea. Discovery Biology Group. Seongnam-si, South Korea.Institut Pasteur Korea. Discovery Biology Group. Seongnam-si, South Korea.Singapore Immunology Network. Agency for Science, Technology and Research. Buona Vista, Singapore.Institut Pasteur Korea. Center for Neglected Diseases Drug Discovery. Seongnam-si, South Korea.Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil.Singapore Immunology Network. Agency for Science, Technology and Research. Buona Vista, Singapore.Institut Pasteur Korea. Center for Neglected Diseases Drug Discovery. Seongnam-si, South Korea.Institut Pasteur Korea. Center for Neglected Diseases Drug Discovery. Seongnam-si, South Korea.Singapore Immunology Network. Agency for Science, Technology and Research. Buona Vista, Singapore.Dengue is a global emerging infectious disease, with no specific treatment available. To identify novel human host cell targets important for dengue virus infection and replication, an image-based high-throughput siRNA assay screening of a human kinome siRNA library was conducted using human hepatocyte cell line Huh7 infected with a recent dengue serotype 2 virus isolate BR DEN2 01-01. In the primary siRNA screening of 779 kinase-related genes, knockdown of 22 genes showed a reduction in DENV-2 infection. Conversely, knockdown of 8 genes enhanced viral infection. To assess host cell specificity, the confirmed hits were tested in the DENV-infected monocytic cell line U937. While the expression of EIF2AK3, ETNK2 and SMAD7 was regulated in both cell lines after infection, most kinases were hepatocyte-specific. Monocytic cells represent initial targets of infection and an antiviral treatment targeting these cells is probably most effective to reduce initial viral load. In turn, infection of the liver could contribute to pathogenesis, and the novel hepatocyte-specific human targets identified here could be important for dengue infection and pathogenesis

    Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1

    No full text
    Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain

    Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1

    No full text
    Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain

    High Content Screening of a Kinase-Focused Library Reveals Compounds Broadly-Active against Dengue Viruses

    Get PDF
    <div><p>Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-<i>N</i>-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates.</p> </div

    Primary screening of the BioFocus kinase inhibitor library.

    No full text
    <p>A collection of 4,000 compounds synthesized on the basis of known kinase binding sites were screened for antiviral activity against DENV1, DENV2, DENV3 and DENV4 infection in Huh-7.5. Scatter-plot distribution shows compound activity based on percent inhibition and percent cell number resulting from the following treatment: 10 µM test compounds (red), 0.5% DMSO carrier (blue), MOCK-infection (green), 500 U/mL IFN-α2A (purple). Area under the dotted squares indicate selected primary hits from each serotype based on the criteria: ≥80% inhbition and <50% cell number.</p
    corecore