2,875 research outputs found

    Southeast Asian American Students\u27 Perceptions on Influential Faculty Practices on Belonging at a Community College

    Get PDF
    The purpose of this study was to identify how faculty perceive their classroom interactions and practices influence sense of belonging for Southeast Asian American students. Research focusing on the sense of belonging in an institution has increased in the recent years and has been identified as a factor in the retention and persistence of college students. Feeling a sense of belonging is important when working with populations of underserved and underrepresented populations. The SEAA population is important because they have been lost in the shadow of the “model minority myth”, assuming to be successful in navigating higher education, while in reality, not persisting at the rate of other Asian populations such as Chinese, Korean, or Asian Indian. The research was focused on the student perception rather than the faculty. The participants in this study are students from a mid-sized community college in a suburb of Minnesota. The students were invited through email with an anonymous survey to collect their responses. They were also invited to complete an open-ended questionnaire. The interview questions are derived from The Community College Equity Assessment Lab (2018) “Community College Success Measure” national survey. The qualitative data was analyzed utilizing ground theory methodology of line-by-line open coding followed by axial coding, identifying themes and consistencies in student experiences. Quantitative data was analyzed in SPSS for descriptive statistics and two-tailed t-tests were utilized to identify significant statistical differences. The research question leading this study is, how do faculty practices and interactions in the classroom encouraging a sense of belonging for SEAA students? The purpose of this study is to identify key practices faculty identify as creating a greater sense of belonging for SEAA students in the community college environment and to give recommendations of what could be done better or more often

    Park Avenue & US 50 Redevelopment Streetscape Performance Benefits Assessment

    Get PDF
    The town of South Lake Tahoe experienced undisciplined development, which created traffic congestion, limited connectivity to recreational assets, and negatively impacted the scenic and environmental quality of Lake Tahoe and the region. In response, strict environmental regulations were developed, which subsequently ceased development activities. Faced with serious environmental and economic problems, residents, officials, and developers jointly revised development regulations and worked to strategically deploy development monies to give the town a new future. Today, the town\u27s Park Avenue Corridor with its wide sidewalks, interconnected plazas, consistent architecture, gondola, intermodal transit center, street furniture, and integrated stormwater management is a national model for redevelopment that promotes economic vitality, improves the natural environment, and creates a strong sense of place

    Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand

    Get PDF
    The macrophage and epithelial cell mannose receptor (MR) binds carbohydrates on foreign and host molecules. Two portions of MR recognize carbohydrates: tandemly arranged C-type lectin domains facilitate carbohydrate-dependent macrophage uptake of infectious organisms, and the NH2-terminal cysteine-rich domain (Cys-MR) binds to sulfated glycoproteins including pituitary hormones. To elucidate the mechanism of sulfated carbohydrate recognition, we determined crystal structures of Cys-MR alone and complexed with 4-sulfated-N-acetylgalactosamine at 1.7 and 2.2 Å resolution, respectively. Cys-MR folds into an approximately three-fold symmetric β-trefoil shape resembling fibroblast growth factor. The sulfate portions of 4-sulfated-N-acetylgalactosamine and an unidentified ligand found in the native crystals bind in a neutral pocket in the third lobe. We use the structures to rationalize the carbohydrate binding specificities of Cys-MR and compare the recognition properties of Cys-MR with other β-trefoil proteins

    Shared genetic factors underlie migraine and depression

    Get PDF
    Free to read\ud \ud Migraine frequently co-occurs with depression. Using a large sample of Australian twin pairs, we aimed to characterize the extent to which shared genetic factors underlie these two disorders. Migraine was classified using three diagnostic measures, including self-reported migraine, the ID migraine screening tool, or migraine without aura (MO) and migraine with aura (MA) based on International Headache Society (IHS) diagnostic criteria. Major depressive disorder (MDD) and minor depressive disorder (MiDD) were classified using the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. Univariate and bivariate twin models, with and without sex-limitation, were constructed to estimate the univariate and bivariate variance components and genetic correlation for migraine and depression. The univariate heritability of broad migraine (self-reported, ID migraine, or IHS MO/MA) and broad depression (MiDD or MDD) was estimated at 56% (95% confidence interval [CI]: 53-60%) and 42% (95% CI: 37-46%), respectively. A significant additive genetic correlation (r G = 0.36, 95% CI: 0.29-0.43) and bivariate heritability (h 2 = 5.5%, 95% CI: 3.6-7.8%) was observed between broad migraine and depression using the bivariate Cholesky model. Notably, both the bivariate h 2 (13.3%, 95% CI: 7.0-24.5%) and r G (0.51, 95% CI: 0.37-0.69) estimates significantly increased when analyzing the more narrow clinically accepted diagnoses of IHS MO/MA and MDD. Our results indicate that for both broad and narrow definitions, the observed comorbidity between migraine and depression can be explained almost entirely by shared underlying genetically determined disease mechanisms

    Familial aggregation of migraine and depression: Insights from a large Australian twin sample

    Get PDF
    Free to read\ud \ud Objectives: This research examined the familial aggregation of migraine, depression, and their co-occurrence.\ud \ud Methods: Diagnoses of migraine and depression were determined in a sample of 5,319 Australian twins. Migraine was diagnosed by either self-report, the ID migraine™ Screener, or International Headache Society (IHS) criteria. Depression was defined by fulfilling either major depressive disorder (MDD) or minor depressive disorder (MiDD) based on the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. The relative risks (RR) for migraine and depression were estimated in co-twins of twin probands reporting migraine or depression to evaluate their familial aggregation and co-occurrence.\ud \ud Results: An increased RR of both migraine and depression in co-twins of probands with the same trait was observed, with significantly higher estimates within monozygotic (MZ) twin pairs compared to dizygotic (DZ) twin pairs. For cross-trait analysis, the RR for migraine in co-twins of probands reporting depression was 1.36 (95% CI: 1.24–1.48) in MZ pairs and 1.04 (95% CI: 0.95–1.14) in DZ pairs; and the RR for depression in co-twins of probands reporting migraine was 1.26 (95% CI: 1.14–1.38) in MZ pairs and 1.02 (95% CI: 0.94–1.11) in DZ pairs. The RR for strict IHS migraine in co-twins of probands reporting MDD was 2.23 (95% CI: 1.81–2.75) in MZ pairs and 1.55 (95% CI: 1.34–1.79) in DZ pairs; and the RR for MDD in co-twins of probands reporting IHS migraine was 1.35 (95% CI: 1.13–1.62) in MZ pairs and 1.06 (95% CI: 0.93–1.22) in DZ pairs.\ud \ud Conclusions: We observed significant evidence for a genetic contribution to familial aggregation of migraine and depression. Our findings suggest a bi-directional association between migraine and depression, with an increased risk for depression in relatives of probands reporting migraine, and vice versa. However, the observed risk for migraine in relatives of probands reporting depression was considerably higher than the reverse. These results add further support to previous studies suggesting that patients with comorbid migraine and depression are genetically more similar to patients with only depression than patients with only migraine

    Chronic administration of methylphenidate produces neurophysiological and behavioral sensitization.

    Get PDF
    The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat\u27s locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC\u27s baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization

    Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats

    Get PDF
    BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% ± 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% ± 5.9% after 2.5 mg/kg MPD, and 56.5% ± 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes

    Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls.

    Get PDF
    ObjectivePerinatal exposure to polychlorinated biphenyls (PCBs) is associated with decreased IQ scores, impaired learning and memory, psychomotor difficulties, and attentional deficits in children. It is postulated that these neuropsychological deficits reflect altered patterns of neuronal connectivity. To test this hypothesis, we examined the effects of developmental PCB exposure on dendritic growth.MethodsRat dams were gavaged from gestational day 6 through postnatal day (PND) 21 with vehicle (corn oil) or the commercial PCB mixture Aroclor 1254 (6 mg/kg/day). Dendritic growth and molecular markers were examined in pups during development.ResultsGolgi analyses of CA1 hippocampal pyramidal neurons and cerebellar Purkinje cells indicated that developmental exposure to PCBs caused a pronounced age-related increase in dendritic growth. Thus, even though dendritic lengths were significantly attenuated in PCB-treated animals at PND22, the rate of growth was accelerated at later ages such that by PND60, dendritic growth was comparable to or even exceeded that observed in vehicle controls. Quantitative reverse transcriptase polymerase chain reaction analyses demonstrated that from PND4 through PND21, PCBs generally increased expression of both spinophilin and RC3/neurogranin mRNA in the hippocampus, cerebellum, and cortex with the most significant increases observed in the cortex.ConclusionsThis study demonstrates that developmental PCB exposure alters the ontogenetic profile of dendritogenesis in critical brain regions, supporting the hypothesis that disruption of neuronal connectivity contributes to neuropsychological deficits seen in exposed children

    Crystal structure of a hemojuvelin-binding fragment of neogenin at 1.8 Å

    Get PDF
    Neogenin is a type I transmembrane glycoprotein with a large ectodomain containing tandem immunoglobulin-like and fibronectin type III (FNIII) domains. Closely related to the tumor suppressor gene DCC, neogenin functions in critical biological processes through binding to various ligands, including netrin, repulsive guidance molecules, and the iron regulatory protein hemojuvelin. We previously reported that neogenin binds to hemojuvelin through its membrane-proximal fifth and sixth FNIII domains (FN5–6), with domain 6 (FN6) contributing the majority of critical binding interactions. Here we present the crystal structure of FN5–6, the hemojuvelin-binding fragment of human neogenin, at 1.8 Å. The two FNIII domains are orientated nearly linearly, a domain arrangement most similar to that of a tandem FNIII-containing fragment within the cytoplasmic tail of the β4 integrin. By mapping surface-exposed residues that differ between neogenin FN5–6 and the comparable domains from DCC, which does not bind hemojuvelin, we identified a potential hemojuvelin-binding site on neogenin FN6. Neogenin FN5, which does not bind hemojuvelin in isolation, exhibits a highly electropositive surface, which may be involved in interactions with negatively-charged polysaccharides or phospholipids in the membrane bilayer. The neogenin FN5–6 structure can be used to facilitate a molecular understanding of neogenin’s interaction with hemojuvelin to regulate iron homeostasis and with hemojuvelin-related repulsive guidance molecules to mediate axon guidance

    Crystal structure of TNFα complexed with a poxvirus MHC-related TNF binding protein

    Get PDF
    The poxvirus 2L protein binds tumor necrosis factor-α (TNFα) to inhibit host antiviral and immune responses. The 2.8-Å 2L–TNFα structure reveals three symmetrically arranged 2L molecules per TNFα trimer. 2L resembles class I major histocompatibility complex (MHC) molecules but lacks a peptide-binding groove and β2-microglobulin light chain. Overlap between the 2L and host TNF receptor-binding sites on TNFα rationalizes 2L inhibition of TNFα–TNF receptor interactions and prevention of TNFα-induced immune responses
    corecore