1,783 research outputs found

    Extension of earth orbits using low-thrust propulsion

    Get PDF
    The primary motivation for the utilization of space for environmental science, and in-particular Earth Observation, is the unique vantage point which a spacecraft can provide. For example, a spacecraft can provide a global dataset with a much higher temporal resolution than any other platform. Earth Observation spacecraft are increasingly focused on a single primary application, typically conducted from a small set of classical orbits which limits the range of vantage points and hence the type of observations which can be made. The next generation of innovative Earth Observation spacecraft may however only be enabled through new orbit options not considered in the past. The objective of the study was therefore to enlarge the set of potential Earth orbits by considering the use of low-thrust propulsion to extend the conventional Molniya orbit. These new orbits will use existing, or near-term low-thrust propulsion technology to enable new Earth Observation science and offer a radically new set of tools for mission design. Continuous low-thrust propulsion was applied in the radial, transverse and normal directions to vary the critical inclination of the Molniya orbit, while maintaining the zero change in argument of perigee condition. As such the inclination can be freely altered from the expected critical inclination of 63.4 deg, to, for example 90 deg, creating a Polar-Molniya orbit. Analytical expressions were developed which were then validated using a numerical model, to show that not only was the argument of perigee unchanged but all other orbital elements were also unaffected by the applied low-thrust. It was shown that thrusting in the transverse direction allowed the spacecraft to achieve any inclination with the lowest thrust magnitude in any single direction; this value was however found to be further reduced by combining both radial and transverse thrust. Real-time continuous observation of the Arctic Circle is then enabled using current electric propulsion technology, with fewer spacecraft than the traditional Sun-synchronous polar orbit, and at reduced range than a 'pole-sitter'. Applications of such an orbit would include more accurate Arctic weather predictions and severe weather event warnings for this region

    Sun-synchronous highly elliptical orbits using low-thrust propulsion

    Get PDF
    Due to restrictions within the current architecture of the global observing system (GOS), space-based remote sensing of Earth suffers from an acute data-deficit over the critical polar-regions. Currently, observation of high-latitude regions is conducted using composite images from spacecraft in geostationary (GEO) and low-Earth orbits (LEOs) [1]. However, the oblique viewing geometry from GEO-based systems to latitudes above around 55 deg [2] and the insufficient temporal resolution of spacecraft in LEO means there is currently no source of continuous imagery for polar-regions obtained with a data refresh rate of less than 15 minutes, as is typically available elsewhere for meteorological observations

    Evaluation Report on Chicago Connection's El Centro de Educacion y Cultura Even Start Program

    Get PDF
    This report examines the accomplishments of El Centro de Educacion y Cultura (hereafter referred to as El Centro) Even Start program in light of the three program objectives stated in the national Even Start evaluation. The objectives are as follows: The literacy of participating families will improve; Even Start projects will reach their target population of families that are most in need of services; and Local Even Start projects will provide comprehensive, instructional and support services of high quality to all families in a cost-effective measure

    Requirements for Selection of Conventional and Innate T Lymphocyte Lineages

    Get PDF
    SummaryMice deficient in the Tec kinase Itk develop a large population of CD8+ T cells with properties, including expression of memory markers, rapid production of cytokines, and dependence on Interleukin-15, resembling NKT and other innate T cell lineages. Like NKT cells, these CD8+ T cells can be selected on hematopoietic cells. We demonstrate that these CD8+ T cell phenotypes resulted from selection on hematopoietic cells—forcing selection on the thymic stroma reduced the number and innate phenotypes of mature Itk-deficient CD8+ T cells. We further show that, similar to NKT cells, selection of innate-type CD8+ T cells in Itk−/− mice required the adaptor SAP. Acquisition of their innate characteristics, however, required CD28. Our results suggest that SAP and Itk reciprocally regulate selection of innate and conventional CD8+ T cells on hematopoietic cells and thymic epithelium, respectively, whereas CD28 regulates development of innate phenotypes resulting from selection on hematopoietic cells

    Effects of personal characteristics on serum CA125, mesothelin, and HE4 levels in healthy postmenopausal women at high-risk for ovarian cancer.

    Get PDF
    OBJECTIVE: To evaluate if serum levels of candidate ovarian cancer biomarkers vary with individual characteristics of healthy women who are likely candidates for an ovarian cancer screening program. METHODS: We analyzed serum CA125, mesothelin, and HE4 levels in a sample of 155 healthy postmenopausal women at increased risk for developing ovarian cancer based on personal and family cancer history. Information on reproductive, family and medical histories, lifestyle factors, and anthropometry was collected by self-report. Twenty-two factors were examined using univariate and multiple linear regression models for the three biomarker levels. RESULTS: In the multivariate models, CA125 levels were significantly higher in women who had used talcum powder (P = 0.02) and were lower in women who were parous (P = 0.05). Mesothelin levels were significantly higher in older women (P = 0.01) and lower in heavier women (P = 0.03). HE4 levels were higher in older women (P = 0.001) and in women who began menstruating at an older age (P = 0.03). CONCLUSIONS: CA125, mesothelin, and HE4 levels in healthy, postmenopausal women at increased risk for ovarian cancer are significantly associated with a few ovarian cancer risk factors. Since the effects of these personal characteristics on these serum markers are not large, their incorporation in screening algorithms may be unnecessary. This is true especially if a longitudinal algorithm is used because the marker level at the previous screen reflects personal characteristics such as age, body mass index, and age of menarche. Understanding the influence of personal factors on levels of novel early detection markers in healthy, unaffected women may have clinical utility in interpreting biomarker levels

    MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific

    Get PDF
    AbstractMany herpesviruses, including Marek's disease viruses (MDV1 and MDV2), encode microRNAs. In this study, we report microRNAs of two related herpesviruses, infectious laryngotracheitis virus (ILTV) and herpesvirus of turkeys (HVT), as well as additional MDV2 microRNAs. The genome locations, but not microRNA sequences, are conserved among all four of these avian herpesviruses. Most are clustered in the repeats flanking the unique long region (I/TRL), except in ILTV which lacks these repeats. Two abundant ILTV microRNAs are antisense to the immediate early gene ICP4. A homologue of host microRNA, gga-miR-221, was found among the HVT microRNAs. Additionally, a cluster of HVT microRNAs was found in a region containing two locally duplicated segments, resulting in paralogous HVT microRNAs with 96–100% identity. The prevalence of microRNAs in the genomic repeat regions as well as in local repeats suggests the importance of genetic plasticity in herpesviruses for microRNA evolution and preservation of function

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p < 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD

    Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source

    Get PDF
    New high precision PIMMS Hf and Pb isotope data for 14–28 Ma basalts recovered during ODP Leg 187 are compared with zero-age dredge samples from the Australian-Antarctic Discordance (AAD). These new data show that combined Nd-Hf isotope systematics can be used as an effective discriminant between Indian and Pacific MORB source mantle domains. In particular, Indian mantle is displaced to lower εNd and higher εHf ratios compared to Pacific mantle. As with Pb isotope plots, there is almost no overlap between the two mantle types in Nd-Hf isotope space. On the basis of our new Nd-Hf isotope data, we demonstrate that Pacific MORB-source mantle was present near the eastern margin of the AAD from as early as 28 Ma, its boundary with Indian MORB-source mantle coinciding with the eastern edge of a basin-wide arcuate depth anomaly that is centered on the AAD. This observation rules out models requiring rapid migration of Pacific MORB mantle into the Indian Ocean basin since separation of Australia from Antarctica. Although temporal variations in isotopic composition can be discerned relative to the fracture zone boundary of the modern AAD at 127°E, the distribution of different compositional groups appears to have remained much the same relative to the position of the residual depth anomaly for the past 30 m.y. Thus significant lateral flow of mantle along the ridge axis toward the interface appears unlikely. Instead, the dynamics that maintain both the residual depth anomaly and the isotopic boundary between Indian and Pacific mantle are due to eastward migration of the Australian and Antarctic plates over a stagnated, but slowly upwelling, slab oriented roughly orthogonal to the ridge axis. Temporal and spatial variations in the compositions of Indian MORB basalts within the AAD can be explained by progressive displacement of shallower Indian MORB-source mantle by deeper mantle having a higher εHf composition ascending ahead of the upwelling slab. Models for the origin of the distinctive composition of the Indian MORB-source based on recycling of a heterogeneous enriched component that consist of ancient altered ocean crust plus<10% pelagic sediment are inconsistent with Nd-Hf isotope systematics. Instead, the data can be explained by a model in which Indian mantle includes a significant proportion of material that was processed in the mantle wedge above a subduction zone and was subsequently mixed back into unprocessed upper mantle
    • …
    corecore