35 research outputs found

    A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    Get PDF
    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers

    A method for the reduction of aerodynamic drag of road vehicles

    Get PDF
    A method is proposed for the reduction of the aerodynamic drag of bluff bodies, particularly for application to road transport vehicles. This technique consists of installation of panels on the forward surface of the vehicle facing the airstream. With the help of road tests, it was demonstrated that the attachment of proposed panels can reduce aerodynamic drag of road vehicles and result in significant fuel cost savings and conservation of energy resources

    Constrained minimization of smooth functions using a genetic algorithm

    Get PDF
    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane

    End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    Get PDF
    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints

    Application of an Optimal Control Allocation Scheme with Structural Load and Aero Heating Feedback for a Morphing Inflatable Aerodynamic Decelerator

    Get PDF
    Precision landing of large payloads on Mars presents a challenge to the Entry, Descent, and Landing (EDL) community. Previous studies indicated that by incorporating the capability for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) to morph during reentry would result in a more accurate landing footprint by allowing modulation of the lift- to-drag (L/D) vector directly instead of through bank angle control. However, morphing the HIAD shape for trajectory control may expose the HIAD to potential structural loads or aero heating concerns. In this study, the application of an optimal control allocation (OCA) technique was investigated that would to enable the morphing HIAD to maximize trajectory control capabilities while simultaneously keeping the structural loads and aero heating below some thresholds. This concept was demonstrated in a 3 degree-of-freedom (DOF) EDL simulation and provides basis for future research

    Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    Get PDF
    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2

    A study of roll attractor and wing rock of delta wings at high angles of attack

    Get PDF
    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data

    Verification of a Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation

    Get PDF
    This paper discusses the verification of the Constraint Force Equation (CFE) methodology and its implementation in the Program to Optimize Simulated Trajectories II (POST2) for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint; the second case involves two rigid bodies connected with a universal joint; and the third test case is that of Mach 7 separation of the Hyper-X vehicle. For the first two cases, the POST2/CFE solutions compared well with those obtained using industry standard benchmark codes, namely AUTOLEV and ADAMS. For the Hyper-X case, the POST2/CFE solutions were in reasonable agreement with the flight test data. The CFE implementation in POST2 facilitates the analysis and simulation of stage separation as an integral part of POST2 for seamless end-to-end simulations of launch vehicle trajectories

    Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    Get PDF
    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectorie

    Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment

    Get PDF
    The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data
    corecore