116 research outputs found

    Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function

    Get PDF
    This work was supported by grants from the NIH (R01CA86072 to R.G.P. and R01CA72038-01 to S.A.W.F.) and The Susan Komen Breast Cancer Foundation (to R.G.P.). R.T.H. and E.J. were supported by the Medical Research Council. Y.-G.Y. is supported by grant CA26504 to E. R. Stanley. Work conducted at the Albert Einstein College of Medicine was supported by Cancer Center Core National Institutes of Health grant 5-P30-CA13330-26.The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both traits repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-kappaS, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.Publisher PDFPeer reviewe

    SUMOylation of AMPK alpha 1 by PIAS4 specifically regulates mTORC1 signalling

    Get PDF
    AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of Z attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPK alpha 1 SUMOylation and the inhibition of AMPK alpha 1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPK alpha 1a mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKa-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPK alpha 1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth.Peer reviewe

    BCOR modulates transcriptional activity of a subset of glucocorticoid receptor target genes involved in cell growth and mobility

    Get PDF
    Glucocorticoid (GC) receptor (GR) is a key transcription factor (TF) that regulates vital metabolic and antiinflammatory processes. We have identified BCL6 corepressor (BCOR) as a dexamethasone-stimulated interaction partner of GR. BCOR is a component of non-canonical polycomb repressor complex 1.1 (ncPCR1.1) and linked to different developmental disorders and cancers, but the role of BCOR in GC signaling is poorly characterized. Here, using ChIP-seq we show that, GC induces genome-wide redistribution of BCOR chromatin binding towards GR-occupied enhancers in HEK293 cells. As assessed by RNA-seq, depletion of BCOR altered the expression of hundreds of GC-regulated genes, especially the ones linked to TNF signaling, GR signaling and cell migration pathways. Biotinylation-based proximity mapping revealed that GR and BCOR share several interacting partners, including nuclear receptor corepressor NCOR1. ChIP-seq showed that the NCOR1 co-occurs with both BCOR and GR on a subset of enhancers upon GC treatment. Simultaneous depletion of BCOR and NCOR1 influenced GR target gene expression in a combinatorial and gene-specific manner. Finally, we show using live cell imaging that the depletion of BCOR together with NCOR1 markedly enhances cell migration. Collectively, our data suggest BCOR as an important gene and pathway selective coregulator of GR transcriptional activity.Peer reviewe

    SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites

    Get PDF
    Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.Peer reviewe

    Response: Commentary: Analysis of SUMO1-conjugation at synapses

    Get PDF
    Wilkinson et al. (2017) commented in this forum on a study of ours (Daniel et al., 2017), in which we report that the evidence for SUMO1-conjugation at synapses and of several synaptic proteins is equivocal. We present here—due to length restrictions—an abbreviated version of a response to Wilkinson et al. that appeared in the comments section of our original publication (Daniel et al., 2017).</p
    corecore