41 research outputs found
Recommended from our members
Evaluation of oesophageal pulse oximetry in patients undergoing cardiothoracic surgery
Pulse oximetry probes placed peripherally may fail to give accurate values of blood oxygen saturation when the peripheral circulation is poor. Because central blood flow may be preferentially preserved, we investigated the oesophagus as an alternative monitoring site. A reflectance blood oxygen saturation probe was developed and evaluated in 49 patients undergoing cardiothoracic surgery. The oesophageal pulse oximeter results were in good agreement with oxygen saturation measurements obtained by a blood gas analyser, a CO-oximeter and a commercial finger pulse oximeter. The median (IQR [range]) difference between the oesophageal oxygen saturation results and those from blood gas analysis were 0.00 (-0.30 to 0.30 [-4.47 to 2.60]), and between the oesophageal oxygen saturation results and those from CO-oximetry were 0.75 (0.30 to 1.20 [-1.80 to 1.80]). Bland-Altman analysis showed that the bias and the limits of agreement between the oesophageal and finger pulse oximeters were -0.3% and -3.3 to 2.7%, respectively. In five (10.2%) patients, the finger pulse oximeter failed for at least 10 min, whereas the oesophageal readings remained reliable. The results suggest that the oesophagus may be used as an alternative monitoring site for pulse oximetry even in patients with compromised peripheral perfusion
Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo
Abstract Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×10 5 cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes
Recommended from our members
Investigation of the human oesophagus as a new monitoring site for blood oxygen saturation
Pulse oximeter probes placed peripherally may fail to give accurate values of arterial blood oxygen saturation (SpO2) when peripheral perfusion is poor. Since central blood flow may be preferentially preserved, the oesophagus was suggested as an alternative monitoring site. A reflectance oesophageal photoplethysmographic (PPG) probe and a multiplexed data acquisition system, operating simultaneously at two wavelengths and incorporating an external three-lead electrocardiogram (ECG) reference channel, has been developed. It has been used to investigate the suitability of the oesophagus as a possible monitoring site for SpO2 in cases of compromised peripheral perfusion. Oesophageal PPG signals and standard ECG traces were obtained from 16 anaesthetized patients and displayed on a laptop computer. Measurable PPG signals with high signal-to-noise ratios at both infrared and red wavelengths were obtained from all five oesophageal depths investigated. The maximum PPG amplitude occurred at 25 cm from the upper incisors in the mid-oesophagus. The measured pulse transit times (PTTs) to the oesophagus were consistent with previous measurements at peripheral sites and had a minimum value of 67 +/- 30 ms at a depth of 30 cm. There was broad agreement between the calculated values of oesophageal SpO2 and those from a commercial finger pulse oximeter
A minimal set of internal control genes for gene expression studies in head and neck squamous cell carcinoma
Selection of the right reference gene(s) is crucial in the analysis and interpretation of gene expression data. The aim of the present study was to discover and validate a minimal set of internal control genes in head and neck tumor studies. We analyzed data from multiple sources (in house whole-genome gene expression microarrays, previously published quantitative real-time PCR (qPCR) data and RNA-seq data from TCGA) to come up with a list of 18 genes (discovery set) that had the lowest variance, a high level of expression across tumors, and their matched normal samples. The genes in the discovery set were ranked using four different algorithms (BestKeeper, geNorm, NormFinder, and comparative delta Ct) and a web-based comparative tool, RefFinder, for their stability and variance in expression across tissues. Finally, we validated their expression using qPCR in an additional set of tumor:matched normal samples that resulted in five genes (RPL30, RPL27, PSMC5, MTCH1, and OAZ1), out of which RPL30 and RPL27 were most stable and were abundantly expressed across the tissues. Our data suggest that RPL30 or RPL27 in combination with either PSMC5 or MTCH1 or OAZ1 can be used as a minimal set of control genes in head and neck tumor gene expression studies
Recommended from our members
Filtering techniques for the removal of ventilator artefact in oesophageal pulse oximetry
The oesophagus has been shown to be a reliable site for monitoring blood oxygen saturation (SpO2). However, the photoplethysmographic (PPG) signals from the lower oesophagus are frequently contaminated by a ventilator artefact making the estimation of SpO2 impossible. A 776th order finite impulse response (FIR) filter and a 695th order interpolated finite impulse response (IFIR) filter were implemented to suppress the artefact. Both filters attenuated the ventilator artefact satisfactorily without distorting the morphology of the PPG when processing recorded data from ten cardiopulmonary bypass patients. The IFIR filter was the better since it conformed more closely to the desired filter specifications and allowed real-time processing. The average improvements in signal-to-noise ratio (SNR) achieved by the FIR and IFIR filters for the fundamental component of the red PPG signals with respect to the fundamental component of the artefact were 57.96 and 60.60 dB, respectively. The corresponding average improvements achieved by the FIR and IFIR filters for the infrared PPG signals were 54.83 and 60.96 dB, respectively. Both filters were also compared with their equivalent tenth order Butterworth filters. The average SNR improvements for the FIR and IFIR filters were significantly higher than those for the Butterworth filters
Recommended from our members
Pulse oximetry in the oesophagus
Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO(2)) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Since central blood flow may be preferentially preserved, this review explores a new alternative site, the oesophagus, for monitoring blood oxygen saturation by pulse oximetry. This review article presents the basic physics, technology and applications of pulse oximetry including photoplethysmography. The limitations of this technique are also discussed leading to the proposed development of the oesophageal pulse oximeter. In the majority, the report will be focused on the description of a new oesophageal photoplethysmographic/SpO(2) probe, which was developed to investigate the suitability of the oesophagus as an alternative monitoring site for the continuous measurement of SpO(2) in cases of poor peripheral circulation. The article concludes with a review of reported clinical investigations of the oesophageal pulse oximeter
Influence of surface passivation by MgO on photovoltaic performance of SnO2 based dye-sensitized solar cells
The study highlights effect of surface modification of SnO2 photoelectrode by MgO coating on photovoltaic properties of dye-sensitized solar cells (DSSCs). A thin coating of MgO on SnO2 photoelectrode was prepared using sol-gel-derived dip coating technique. The bare SnO2 and MgO coated SnO2 composite photoanodes was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis spectrophotometer. The optical absorption study revealed that the modification in SnO2 by MgO coating caused an increase in absorption by photoanode in visible region. The solar cell was demonstrated by preparing FTO|SnO2|Dye|MgO|Electrolyte|Pt coated FTO device structure and tested with current density-voltage (J-V) measurement. The effect of precursor concentration of MgO coating on the performance of DSSCs were investigated. It was found that, optimized coating of MgO for 90 seconds on SnO2 improved all photovoltaic parameters, resulting in enhancement in efficiency by 42% compared to that of DSSC with bare SnO2 photoanode. The coating of MgO would have reduced the trap states and suppressed interfacial recombination losses by preventing back electron transfer from the conduction band of the semiconductor to HOMO of dye molecule or redox species
Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo
Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo.
Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity.
Results: The levels of SCC (×105 cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant.
Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes