455 research outputs found
Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels.
Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom's metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P.Ā tricornutum's response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P.Ā tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P.Ā tricornutum's metabolism
Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach
The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy) data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments (~10(12)) that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge
Pangenome reconstruction of Lactobacillaceae metabolism predicts species-specific metabolic traits.
Strains across the Lactobacillaceae family form the basis for a trillion-dollar industry. Our understanding of the genomic basis for their key traits is fragmented, however, including the metabolism that is foundational to their industrial uses. Pangenome analysis of publicly available Lactobacillaceae genomes allowed us to generate genome-scale metabolic network reconstructions for 26 species of industrial importance. Their manual curation led to more than 75,000 gene-protein-reaction associations that were deployed to generate 2,446 genome-scale metabolic models. Cross-referencing genomes and known metabolic traits allowed for manual metabolic network curation and validation of the metabolic models. As a result, we provide the first pangenomic basis for metabolism in the Lactobacillaceae family and a collection of predictive computational metabolic models that enable a variety of practical uses.IMPORTANCELactobacillaceae, a bacterial family foundational to a trillion-dollar industry, is increasingly relevant to biosustainability initiatives. Our study, leveraging approximately 2,400 genome sequences, provides a pangenomic analysis of Lactobacillaceae metabolism, creating over 2,400 curated and validated genome-scale models (GEMs). These GEMs successfully predict (i) unique, species-specific metabolic reactions; (ii) niche-enriched reactions that increase organism fitness; (iii) essential media components, offering insights into the global amino acid essentiality of Lactobacillaceae; and (iv) fermentation capabilities across the family, shedding light on the metabolic basis of Lactobacillaceae-based commercial products. This quantitative understanding of Lactobacillaceae metabolic properties and their genomic basis will have profound implications for the food industry and biosustainability, offering new insights and tools for strain selection and manipulation
Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition
BACKGROUND: Extreme pathways (ExPas) have been shown to be valuable for studying the functions and capabilities of metabolic networks through characterization of the null space of the stoichiometric matrix (S). Singular value decomposition (SVD) of the ExPa matrix P has previously been used to characterize the metabolic regulatory problem in the human red blood cell (hRBC) from a network perspective. The calculation of ExPas is NP-hard, and for genome-scale networks the computation of ExPas has proven to be infeasible. Therefore an alternative approach is needed to reveal regulatory properties of steady state solution spaces of genome-scale stoichiometric matrices. RESULTS: We show that the SVD of a matrix (W) formed of random samples from the steady-state solution space of the hRBC metabolic network gives similar insights into the regulatory properties of the network as was obtained with SVD of P. This new approach has two main advantages. First, it works with a direct representation of the shape of the metabolic solution space without the confounding factor of a non-uniform distribution of the extreme pathways and second, the SVD procedure can be applied to a very large number of samples, such as will be produced from genome-scale networks. CONCLUSION: These results show that we are now in a position to study the network aspects of the regulatory problem in genome-scale metabolic networks through the use of random sampling. Contact: [email protected]
Antibacterial mechanisms identified through structural systems pharmacology
Background: The growing discipline of structural systems pharmacology is applied prospectively in this study to predict pharmacological outcomes of antibacterial compounds in Escherichia coli K12. This work builds upon previously established methods for structural prediction of ligand binding pockets on protein molecules and utilizes and expands upon the previously developed genome scale model of metabolism integrated with protein structures (GEM-PRO) for E. coli, structurally accounting for protein complexes. Carefully selected case studies are demonstrated to display the potential for this structural systems pharmacology framework in discovery and development of antibacterial compounds. Results: The prediction framework for antibacterial activity of compounds was validated for a control set of well-studied compounds, recapitulating experimentally-determined protein binding interactions and deleterious growth phenotypes resulting from these interactions. The antibacterial activity of fosfomycin, sulfathiazole, and trimethoprim were accurately predicted, and as a negative control glucose was found to have no predicted antibacterial activity. Previously uncharacterized mechanisms of action were predicted for compounds with known antibacterial properties, including (1-hydroxyheptane-1,1-diyl)bis(phosphonic acid) and cholesteryl oleate. Five candidate inhibitors were predicted for a desirable target protein without any known inhibitors, tryptophan synthase Ī² subunit (TrpB). In addition to the predictions presented, this effort also included significant expansion of the previously developed GEM-PRO to account for physiological assemblies of protein complex structures with activities included in the E. coli K12 metabolic network. Conclusions: The structural systems pharmacology framework presented in this study was shown to be effective in the prediction of molecular mechanisms of antibacterial compounds. The study provides a promising proof of principle for such an approach to antibacterial development and raises specific molecular and systemic hypotheses about antibacterials that are amenable to experimental testing. This framework, and perhaps also the specific predictions of antibacterials, is extensible to developing antibacterial treatments for pathogenic E. coli and other bacterial pathogens
Impact of nephrolithiasis on kidney function.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.Kidney stone disease has been associated with reduced kidney function and chronic kidney disease (CKD). The objective of the study was to examine kidney function, body mass index (BMI) and the prevalence of cardiovascular disease, hypertension and diabetes in recurrent kidney stone formers.A cross-sectional, case-control study comparing measures of kidney function, BMI and comorbid conditions was conducted in 195 kidney stone patients aged 18 to 70Ā years with recurrent clinical stone events and 390 age- and gender-matched controls. Wilcoxon-Mann-Whitney, chi-square tests and analysis of covariance were used to compare serum creatinine (SCr) and estimated glomerular filtration rate (eGFR) between the groups.The median age of stone formers was 51 (range, 19-70) years and 108 (55Ā %) were males. Seventy patients (36Ā %) had experienced 2-4 clinical stone events, 41 (21Ā %) 5-10 episodes and 84 (43Ā %) more than 10. The median SCr was 75 (41-140) Ī¼mol/L in the stone formers and 64 (34-168) Ī¼mol/L in the control group (pā<ā0.001). The mean eGFR was 87āĀ±ā20 and 104āĀ±ā22Ā mL/min/1.73Ā m(2) in the stone formers and controls, respectively (pā<ā0.001). After adjustment for body size and comorbid conditions, the difference in SCr and eGFR between cases and controls remained highly significant (pā<ā0.001). The prevalence of CKD was 9.3Ā % among stone formers compared with 1.3Ā % in the control group (Pā<ā0.001). Hypertension and diabetes were significantly more prevalent among the cases that also had higher BMI than controls.Recurrent kidney stone formers have a significantly lower level of kidney function and a markedly higher prevalence of CKD than age- and gender-matched control subjects. The observed deleterious effect of kidney stones on kidney function appears to be independent of comorbid conditions.Landspitali University Hospital Research Fun
Flux networks in metabolic graphs
A metabolic model can be represented as bipartite graph comprising linked
reaction and metabolite nodes. Here it is shown how a network of conserved
fluxes can be assigned to the edges of such a graph by combining the reaction
fluxes with a conserved metabolite property such as molecular weight. A similar
flux network can be constructed by combining the primal and dual solutions to
the linear programming problem that typically arises in constraint-based
modelling. Such constructions may help with the visualisation of flux
distributions in complex metabolic networks. The analysis also explains the
strong correlation observed between metabolite shadow prices (the dual linear
programming variables) and conserved metabolite properties. The methods were
applied to recent metabolic models for Escherichia coli, Saccharomyces
cerevisiae, and Methanosarcina barkeri. Detailed results are reported for E.
coli; similar results were found for the other organisms.Comment: 9 pages, 4 figures, RevTeX 4.0, supplementary data available (excel
- ā¦