68 research outputs found

    STM contrast inversion of the Fe(110) surface

    Get PDF
    We extend the orbital-dependent electron tunneling model implemented within the three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB) atom-superposition approach to simulate spin-polarized scanning tunneling microscopy (SP-STM) above magnetic surfaces. The tunneling model is based on the electronic structure data of the magnetic tip and surface obtained from first principles. Applying our method, we analyze the orbital contributions to the tunneling current, and study the nature of atomic contrast reversals occurring on constant-current SP-STM images above the Fe(110) surface. We find an interplay of orbital-dependent tunneling and spin-polarization effects responsible for the contrast inversion, and we discuss its dependence on the bias voltage, on the tip-sample distance, and on the tip orbital composition.Comment: 20 pages manuscript, 5 figure

    What is the orientation of the tip in a scanning tunneling microscope?

    Get PDF
    We introduce a statistical correlation analysis method to obtain information on the local geometry and orientation of the tip used in scanning tunneling microscopy (STM) experiments based on large scale simulations. The key quantity is the relative brightness correlation of constant-current topographs between experimental and simulated data. This correlation can be analyzed statistically for a large number of modeled tip orientations and geometries. Assuming a stable tip during the STM scans and based on the correlation distribution, it is possible to determine the tip orientations that are most likely present in an STM experiment, and exclude other orientations. This is especially important for substrates such as highly oriented pyrolytic graphite (HOPG) since its STM contrast is strongly tip dependent, which makes interpretation and comparison of STM images very challenging. We illustrate the applicability of our method considering the HOPG surface in combination with tungsten tip models of two different apex geometries and 18144 different orientations. We calculate constant-current profiles along the direction of the HOPG(0001) surface in the V1|V|\le 1 V bias voltage range, and compare them with experimental data. We find that a blunt tip model provides better correlation with the experiment for a wider range of tip orientations and bias voltages than a sharp tip model. Such a combination of experiments and large scale simulations opens up the way for obtaining more detailed information on the structure of the tip apex and more reliable interpretation of STM data in the view of local tip geometry effects.Comment: Progress in Surface Science, accepted for publication, 25 pages manuscript, 9 figures, abstract shortene

    Orbital dependent electron tunneling within the atom superposition approach: Theory and application to W(110)

    Get PDF
    We introduce an orbital dependent electron tunneling model and implement it within the atom superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS). Applying our method, we analyze the convergence and the orbital contributions to the tunneling current and the corrugation of constant current STM images above the W(110) surface. In accordance with a previous study [Heinze et al., Phys. Rev. B 58, 16432 (1998)], we find atomic contrast reversal depending on the bias voltage. Additionally, we analyze this effect depending on the tip-sample distance using different tip models, and find two qualitatively different behaviors based on the tip orbital composition. As an explanation, we highlight the role of the real space shape of the orbitals involved in the tunneling. STM images calculated by our model agree well with Tersoff-Hamann and Bardeen results. The computational efficiency of our model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computation time, in contrast to the Bardeen method.Comment: 28 pages manuscript, 7 figures, 1 tabl

    Theoretical study of the role of the tip in enhancing the sensitivity of differential conductance tunneling spectroscopy on magnetic surfaces

    Get PDF
    Based on a simple model for spin-polarized scanning tunneling spectroscopy (SP-STS) we study how tip magnetization and electronic structure affects the differential conductance (dI/dV) tunneling spectrum of an Fe(001) surface. We take into account energy dependence of the vacuum decay of electron states, and tip electronic structure either using an ideal model or based on ab initio electronic structure calculation. In the STS approach, topographic and magnetic contributions to dI/dV can clearly be distinguished and analyzed separately. Our results suggest that the sensitivity of STS on a magnetic sample can be tuned and even enhanced by choosing the appropriate magnetic tip and bias setpoint, and the effect is governed by the effective spin-polarization.Comment: 22 pages manuscript, 4 figures; http://link.aps.org/doi/10.1103/PhysRevB.83.21441

    Simulation of spin-polarized scanning tunneling microscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111)

    Get PDF
    We propose an atom-superposition-based method for simulating spin-polarized scanning tunneling microscopy (SP-STM) from first principles. Our approach provides bias dependent STM images in high spatial resolution, with the capability of using either constant current or constant height modes of STM. In addition, topographic and magnetic contributions can clearly be distinguished, which are directly comparable to results of SP-STM experiments in the differential magnetic mode. Advantages of the proposed method are that it is computationally cheap, it is easy to parallelize, and it can employ the results of any ab initio electronic structure code. Its capabilities are illustrated for the prototype frustrated hexagonal antiferromagnetic system, Cr monolayer on Ag(111) in a noncollinear magnetic 120120^{\circ} N\'eel state. We show evidence that the magnetic contrast is sensitive to the tip electronic structure, and this contrast can be reversed depending on the bias voltage.Comment: 28 pages manuscript, 1 table, 5 figure

    Prediction of the bias voltage dependent magnetic contrast in spin-polarized scanning tunneling microscopy

    Get PDF
    This work is concerned with the theoretical description of the contrast, i.e., the apparent height difference between two lateral surface positions on constant current spin-polarized scanning tunneling microscopy (SP-STM) images. We propose a method to predict the bias voltage dependent magnetic contrast from single point tunneling current or differential conductance measurements, without the need of scanning large areas of the surface. Depending on the number of single point measurements, the bias positions of magnetic contrast reversals and of the maximally achievable magnetic contrast can be determined. We validate this proposal by simulating SP-STM images on a complex magnetic surface employing a recently developed approach based on atomic superposition. Furthermore, we show evidence that the tip electronic structure and magnetic orientation have a major effect on the magnetic contrast. Our theoretical prediction is expected to inspire experimentalists to considerably reduce measurement efforts for determining the bias dependent magnetic contrast on magnetic surfaces.Comment: 28 pages manuscript, 1 table, 6 figure

    Contrast stability and "stripe" formation in Scanning Tunnelling Microscopy imaging of highly oriented pyrolytic graphite: The role of STM-tip orientations

    Get PDF
    Highly oriented pyrolytic graphite (HOPG) is an important substrate in many technological applications and is routinely used as a standard in Scanning Tunnelling Microscopy (STM) calibration, which makes the accurate interpretation of the HOPG STM contrast of great fundamental and applicative importance. We demonstrate by STM simulations based on electronic structure obtained from first principles that the relative local orientation of the STM-tip apex with respect to the HOPG substrate has a considerable effect on the HOPG STM contrast. Importantly for experimental STM analysis of HOPG, the simulations indicate that local tip-rotations maintaining a major contribution of the d3z2r2d_{3z^2-r^2} tip-apex state to the STM current affect only the secondary features of the HOPG STM contrast resulting in "stripe" formation and leaving the primary contrast unaltered. Conversely, tip-rotations leading to enhanced contributions from m0m\ne 0 tip-apex electronic states can cause a triangular-hexagonal change in the primary contrast. We also report a comparison of two STM simulation models with experiments in terms of bias-voltage-dependent STM topography brightness correlations, and discuss our findings for the HOPG(0001) surface in combination with tungsten tip models of different sharpnesses and terminations.Comment: 20 pages manuscript, 7 Figures, 2 Tables, accepted for publication in J. Phys. Condens. Matte
    corecore