111 research outputs found

    Characterization of Cadmium-Zinc Telluride Crystals Grown by 'Contactless' PVT Using Synchrotron White Beam Topography

    Get PDF
    Crystals of Cd(1-x)Zn(x)Te grown by Physical Vapor Transport (PVT) using self-seeding 'contactless' techniques were characterized using synchrotron radiation (reflection, transmission, and Laue back-reflection X-ray topography). Crystals of low (x = 0.04) and high (up to x approx. = 0.4) ZnTe content were investigated. Twins and defects such as dislocations, precipitates, and slip bands were identified. Extensive inhomogeneous strains present in some samples were found to be generated by interaction (sticking) with the pedestal and by composition gradients in the crystals. Large (up to about 5 mm) oval strain fields were observed around some Te precipitates. Low angle grain boundaries were found only in higher ZnTe content (x greater than or equal to 0.2) samples

    Microstructure of nanocrystalline diamond powders studied by powder diffractometry

    Get PDF
    High resolution x-ray diffraction peaks of diamond nanosize powders of nominal sizes ranging from 5 to 250 nm were analyzed and provided information on grain structure, average size of crystallites, and concentration of dislocations. Selected samples were heat treated at 1670 K at pressures 2.0 and 5.5 GPa or had surface modified by outgassing, heat treatment at vacuum conditions, and by controlled adsorption of gases. The apparent lattice parameter method was applied to characterize the structure of a shell-core model of nanosize particles. The multiple whole profile fitting provided information on crystallite sizes and density of dislocations. Population of dislocations increased with applied pressure, while strain and interplanar distances in the surface layers decreased. Adsorption of foreign gases on the grain surface modified the structure of the surface layers but did not affect dislocations near the center of the grains

    Compression and thermal expansion of nanocrystalline TiN

    Get PDF
    Abstract. TiN nanopowders synthesized by the application of an anaerobic "imide" route and aerosol synthesis with 5 and 26 nm average size were examined by in situ diffraction at high pressure up to 6 GPa and high temperature up to 800 o C. Overall compressibilities and thermal expansion coefficients were determined for the examined pressure and temperature intervals. Nanocrystals of TiN show core-shell type structure where elastic properties of interior and surface shell are different; surface is softer and shows larger thermal expansion than crystalline TiN. Core-shell model was confirmed by analysis of large Q powder diffraction at room temperature with application of alp-Q and PDF analysis

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni

    Special phase transformation and crystal growth pathways observed in nanoparticles†

    Get PDF
    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO(2)) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling

    CdI2

    No full text

    CdI2 22H9

    No full text

    CdI2 42H1

    No full text

    CdI2

    No full text
    corecore