221 research outputs found

    A Case for Hypogravity Studies Aboard ISS

    Get PDF
    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent subjects for extended periods (weeks to months) at various hypogravity levels. Experiments aboard such a centrifuge could provide important insight into human exploration questions and simultaneously answer fundamental questions in gravitational physiology

    Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    Get PDF
    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration missions dominated these discussions and were driven by the paucity of data available. These issues along with more specific recommendations arising from the above discussions will be addressed an upcoming issue of the Journal of Vestibular Research

    Head Tilt Posturography to Enhance Balance Control Assessment for Astronauts: A Case Study

    Get PDF
    For many years, we have used a standard clinical computerized dynamic posturography (CDP) protocol to assess recovery of integrated sensory-motor function in astronauts returning from space flight. The most reliable indications of postflight crew performance capabilities have been obtained from the sensory organization tests (SOTs) within the CDP protocol, particularly SOTs 5 (eyes closed, surface support sway referenced) and 6 (eyes open, surface support and visual surround sway referenced), which are sensitive to changes in availability and/or utilization of vestibular cues. We have observed, however, that some astronauts exhibiting visible signs of incomplete sensory-motor recovery are able to score within clinical norms on standard SOTs 5 and 6 trials, perhaps as a result of cognitive strategies driven by their naturally competitive natures. To improve the sensitivity of the CDP protocol for assessing recovery of integrated sensory-motor function and fitness to return to duties and/or activities of daily living, we have introduced pitch plane head tilt SOT trials to our protocol. In a preliminary study of 5 short duration (~11day missions) astronauts, we showed that they were unable to maintain balance on landing day when performing dynamic head tilt trials, despite scoring within the clinically normal range on the standard SOT trials. The present case report illustrates the advantages of including head tilt trials for assessing sensory-motor recovery in long duration crewmembers

    Physics of Artificial Gravity

    Get PDF
    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented

    Physiological Targets of Artificial Gravity: The Sensory-Motor System

    Get PDF
    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orientation. The sensory systems, and in particular the vestibular system, must adapt to weightlessness on entering orbit, and again to normal gravity upon return to Earth. During this period of adaptation, which persists beyond the actual gravity-level transition itself the sensory-motor systems are disturbed. Although artificial gravity may prove to be beneficial for the musculoskeletal and cardiovascular systems, it may well have negative side effects for the neurovestibular system, such as spatial disorientation, malcoordination, and nausea

    Recommended Research on Artificial Gravity

    Get PDF
    Based on the summaries presented in the above sections of what is still to be learned on the effects of artificial gravity on human functions, this chapter will discuss the short- and long-term steps of research required to understand fundamentals and to validate operational aspects of using artificial gravity as an effective countermeasure for long-duration space travel

    Determining postural stability

    Get PDF
    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states

    The Neuro-Vestibular System in the Space Environment

    Get PDF
    No abstract availabl

    Addressing Human System Risks to Future Space Exploration

    Get PDF
    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then assessed the likelihood and consequences of each risk against each DRM, using three levels of likelihood (Low: less than or equal to 0.1%; Medium: 0.1%1.0%; High: greater than or equal to 1.0%) and four levels of consequence ranging from Very Low (temporary or insignificant) to High (death, loss of mission, or significant reduction to length or quality of life). Quantitative evidence from clinical, operational, and research sources were used whenever available. Qualitative evidence was used when quantitative evidence was unavailable. Expert opinion was used whenever insufficient evidence was available. Results: A set of 30 risks emerged that will require further mitigation efforts before being accepted by the Agency. The likelihood by consequence risk assessment process provided a means of prioritizing among the risks identified. For each of the high priority risks, a plan was developed to perform research, technology, or standards development thought necessary to provide suitable reduction of likelihood or consequence to allow agency acceptance. Conclusion: The HSRB process has successfully identified a complete set of risks to human space travelers on planned exploration missions based on the best evidence available today. Risk mitigation plans have been established for the highest priority risks. Each risk will be reassessed annually to track the progress of our risk mitigation efforts
    corecore