10 research outputs found

    RISC-V-Based Platforms for HPC: Analyzing Non-functional Properties for Future HPC and Big-Data Clusters

    Get PDF
    High-Performance Computing (HPC) have evolved to be used to perform simulations of systems where physical experimentation is prohibitively impractical, expensive, or dangerous. This paper provides a general overview and showcases the analysis of non-functional properties in RISC-V-based platforms for HPCs. In particular, our analyses target the evaluation of power and energy control, thermal management, and reliability assessment of promising systems, structures, and technologies devised for current and future generation of HPC machines. The main set of design methodologies and technologies developed within the activities of the Future and HPC & Big Data spoke of the National Centre of HPC, Big Data and Quantum Computing project are described along with the description of the testbed for experimenting two-phase cooling approaches

    Measurement of viral load by the automated Abbott real-time HIV-1 assay using dried blood spots collected and processed in Malawi and Mozambique

    Get PDF
    Background. The use of dried blood spots (DBS) for HIV-1 viral load quantification can greatly improve access to viral monitoring for HIV-infected patients receiving treatment in resource-limited settings.Objectives. To evaluate and validate HIV viral load measurement from DBS in sub-Saharan Africa, with a reliable, all-automated, standard commercial assay such as the Abbott m2000.Methods. A total of 277 DBS were collected in different health centres in Malawi and Mozambique and analysed for viral load determination using the Abbott m2000 assay with the corresponding plasma samples as gold standard. Samples were extracted using the m2000SP automatic extractor and then processed as the plasma samples using the specific 1.0 mL HIV-RNA DBS protocol.Results. Among samples with detectable HIV-RNA the correlation between viral load obtained from the paired 131 plasma and DBS samples was high (r=0.946). Overall, viral load values between DBS and plasma differed by less than 0.5 log unit in 90.1% of cases and by less than 1 log unit in 100% of cases. Using a threshold of 1 000 copies/mL (defining virological failure in resource-limited settings), sensitivity was 94.2% and specificity 98.6%, and both positive and negative predictive values were high (98.5% and 94.5%, respectively).Conclusion. DBS extracted and processed using the Abbott automated system can be reliably used in resource-limited setting to diagnose virological failure

    Accumulation of HIV-1 drug resistance in patients on a standard thymidine analogue-based first line antiretroviral therapy after virological failure: Implications for the activity of next-line regimens from a longitudinal study in Mozambique

    Get PDF
    Background: We describe the accumulation of HIV-1 drug resistance and its effect on the activity of next-line components in patients with virological failure (HIV-1 RNA >1000 copies/mL) after 1 year (t1) of first-line antiretroviral therapy (ART) not switching to second-line drugs for one additional year (t2) in low-middle income countries (LMIC). Methods and results: We selected 48 patients from the DREAM cohort (Maputo, Mozambique); their median pre-ART CD4+ cell count was 165 cells/μl. At t1 patients were receiving ART since a median of 12.2 months (mainly zidovudine/lamivudine/nevirapine), their median HIV RNA was 3.8 log10 copies/mL, 43 (89.6%) presented at least one resistance-associated mutation (RAM), most frequently for lamivudine/emtricitabine, nevirapine and efavirenz. Resistance to tenofovir, was 10% at 1 year and higher than 20% at 2 years, while projection at 3 years was >30%. At t2, 42 (89.4%) had a predicted low-level or higher resistance to at least 1 s-line drug. At t1, the frequency of RAM in patients with a lower adherence to pharmacy appointments (10,000 copies/mL; NNRTI RAM accumulation rate was 0.15/year, 0.40/year in the subgroup with HIV RNA >10,000 copies/mL. Conclusions: While the activity of NNRTIs is compromised early during failure, tenofovir and zidovudine activity are reduced more frequently after 1 year of documented virological failure of thymidine analogue-based first-line ART, with RAMs accumulating faster in patients with higher viral loads. The present observation may help informing decisions on when to switch to a second line ART in patients on virological failure in LMIC

    The SURPRISE demonstrator: a super-resolved compressive instrument in the visible and medium infrared for Earth Observation

    Get PDF
    While Earth Observation (EO) data has become ever more vital to understanding the planet and addressing societal challenges, applications are still limited by revisit time and spatial resolution. Though low Earth orbit missions can achieve resolutions better than 100 m, their revisit time typically stands at several days, limiting capacity to monitor dynamic events. Geostationary (GEO) missions instead typically provide data on an hour-basis but with spatial resolution limited to 1 km, which is insufficient to understand local phenomena. In this paper, we present the SURPRISE project - recently funded in the frame of the H2020 programme – that gathers the expertise from eight partners across Europe to implement a demonstrator of a super-spectral EO payload - working in the visible (VIS) - Near Infrared (NIR) and in the Medium InfraRed (MIR) and conceived to operate from GEO platform -with enhanced performance in terms of at-ground spatial resolution, and featuring innovative on-board data processing and encryption functionalities. This goal will be achieved by using Compressive Sensing (CS) technology implemented via Spatial Light Modulators (SLM). SLM-based CS technology will be used to devise a super-resolution configuration that will be exploited to increase the at-ground spatial resolution of the payload, without increasing the number of detector’s sensing elements at the image plane. The CS approach will offer further advantages for handling large amounts of data, as is the case of superspectral payloads with wide spectral and spatial coverage. It will enable fast on-board processing of acquired data for information extraction, as well as native data encryption on top of native compression. SURPRISE develops two disruptive technologies: Compressive Sensing (CS) and Spatial Light Modulator (SLM). CS optimises data acquisition (e.g. reduced storage and transmission bandwidth requirements) and enables novel onboard processing and encryption functionalities. SLM here implements the CS paradigm and achieves a super-resolution architecture. SLM technology, at the core of the CS architecture, is addressed by: reworking and testing off-the-shelf parts in relevant environment; developing roadmap for a European SLM, micromirror array-type, with electronics suitable for space qualification. By introducing for the first time the concept of a payload with medium spatial resolution (few hundreds of meters) and near continuous revisit (hourly), SURPRISE can lead to a EO major breakthrough and complement existing operational services. CS will address the challenge of large data collection, whilst onboard processing will improve timeliness, shortening time needed to extract information from images and possibly generate alarms. Impact is relevant to industrial competitiveness, with potential for market penetration of the demonstrator and its components

    Chiari 1 Malformation and Epilepsy in Children: A Missing Relationship

    No full text
    Purpose: Once believed a result of pathophysiological correlations, the association between Chiari 1 malformation (CM1) and epilepsy has since been considered as a coincidence, due to missing etiologic or clinical matching points. At present, the problem is being newly debated because of the increasing number of CM1 diagnoses, often among children with seizures. No specific studies on this topic are available yet. The present study aimed at updating the information on this topic by reporting on a series of children specifically enrolled and retrospectively analyzed for this purpose. Methods: All children admitted between January 2015 and June 2020 for epilepsy and CM1 were considered (Group 1). They were compared with children admitted in the same period for symptoms/signs related to CM1 and/or syringomyelia (Group 2). Syndromic patients were excluded, as well as those with tumoral or other overt intracranial lesions. All patients received a complete preoperative work-up, including MRI and EEG. Symptomatic children with CM1/syringomyelia were operated on. The pertinent literature was reviewed. Results: Group 1 was composed of 29 children (mean age: 6.2 years) showing CM1 and epilepsy with several types of seizures. A share of 27% had CM1-related symptoms and syringomyelia. The mean tonsillar ectopia was 7.5 mm. Surgery was performed in 31% of cases. Overall, 62% of children are currently seizure-free (including 5/9 children who were operated on). Tonsillar herniation and syringomyelia regressed in 4/9 cases and 4/8 cases, improved in 4/9 cases and 3/8 cases, and remained stable in 1/9 and 1/8 cases, respectively. CM1 signs/symptoms regressed completely in 6/8 cases and improved or remained stable in one case in each of the two remaining patients. Group 2 consisted of 77 children (mean age: 8.9 years) showing symptoms of CM1 (75%) and/or syringomyelia (39%). The mean tonsillar ectopia was 11.8 mm. Non-specific EEG anomalies were detected in 13 children (17%). Surgery was performed in 76.5% of cases (18 children were not operated on because of oligosymptomatic). Preoperative symptoms regressed in 26%, improved in 50%, remained stable 22%, and worsened in 2%; CM1 radiologically regressed in 39%, improved in 37%, remained unchanged in 22%, and worsened in 2%; and syringomyelia/hydromyelia regressed in 61%, improved in 30%, and was stable in 9%. No statistically significant differences between the two groups were detected regarding the M/F ratio, presence of syringomyelia/hydromyelia, or CM1/syringomyelia outcome; moreover, no correlation occurred between seizure-free condition and PF decompression in Group 1, or between disappearance of EEG anomalies and PF decompression in Group 2. A significant difference between the two groups was noticed regarding the mean age at admission (p = 0.003), amount of tonsillar herniation (p < 0.00001), and PF decompression (p = 0.0001). Conclusions: These findings do not support clinical correlations between CM1 and epilepsy. Their course depends on surgery and antiepileptic drugs, respectively. The analysis of the literature does not provide evidence of a relationship between seizures and cerebellar anomalies such as CM1. Rather than being linked to a syndrome that could explain such an association, the connection between the two now has to be considered to be random

    Neurosurgical Defeats: Critically Ill Patients and the Role of Palliative Care Service

    No full text
    The onco-functional balance in neuro-oncology requires maximizing tumor removal while rigorously preserving patients’ neurological status. When postoperative worsening prevents the implementation of oncologic treatments, palliative care service offers an individualized path for symptom and psychosocial distress relief. Here, we report on a series of 25 patients operated on for malignant brain tumor who did not undergo adjuvant treatments after neurosurgery; they represented 3.9% of the whole institutional surgical series. These patients were significantly older and had a lower preoperative Karnofsky performance status than the whole cohort. Importantly, in 22 out of 25 (88%) cases, a surgical complication occurred, leading to clinical worsening in 21 patients. For the end of life, the majority of patients chose a hospice care facility (72%). While a careful selection of brain tumor patients candidate to neurosurgery is required, palliative care service provided invaluable help in coping with patients’ and caregivers’ needs

    Designing a Compressive Sensing Demonstrator of an Earth Observation Payload in the Visible and Medium Infrared: Instrumental Concept and Main Features

    No full text
    Increased spatial resolution and revisit time of payloads operating in the infrared spectral region can offer unprecedented advantages to Earth Observation. This, however, poses several technological challenges, such as large array detector availability and data bandwidth. In this paper, we present a super-resolved demonstrator—based on a compressive sensing architecture—which is being developed to address enhanced performance in terms of at-ground spatial resolution, on-board data processing and encryption functionalities for Earth Observation payloads. The demonstrator’s architecture is here presented, together with its working principle, main features and the approach used for image reconstruction
    corecore