27 research outputs found

    Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin

    Get PDF
    Ferritin proteins are taking center stage as smart nanocarriers for drug delivery due to their hollow cage-like structures and their unique 24-meric assembly. Among all ferritins, the chimeric Archaeoglobus ferritin (HumFt) is able assemble/disassemble varying the ionic strength of the medium while recognizing human TfR1 receptor overexpressed in cancer cells. In this paper we present a highly efficient, large scale purification protocol mainly based on crossflow ultrafiltration, starting from fermented bacterial paste. This procedure allows one to obtain about 2 g of purified protein starting from 100 g of fermented bacterial paste. The current procedure can easily remove contaminant proteins as well as DNA molecules in the absence of expensive and time consuming chromatographic steps

    Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells

    Get PDF
    In this work, we have exploited the unique properties of a chimeric archaeal-human ferritin to encapsulate, deliver and release cytochrome c and induce apoptosis in a myeloid leukemia cell line. The chimeric protein combines the versatility in 24-meric assembly and cargo incorporation capability of Archaeglobus fulgidus ferritin with specific binding of human H ferritin to CD71, the “heavy duty” carrier responsible for transferrin-iron uptake. Delivery of ferritin-encapsulated cytochrome C to the Acute Promyelocytic Leukemia (APL) NB4 cell line, highly resistant to transfection by conventional methods, was successfully achieved in vitro. The effective liberation of cytochrome C within the cytosolic environment, demonstrated by double fluorescent labelling, induced apoptosis in the cancer cells

    Ferritin nanocages for protein delivery to tumor cells

    Get PDF
    The delivery of therapeutic proteins is one of the greatest challenges in the treatment of human diseases. In this frame, ferritins occupy a very special place. Thanks to their hollow spherical structure, they are used as modular nanocages for the delivery of anticancer drugs. More recently, the possibility of encapsulating even small proteins with enzymatic or cytotoxic activity is emerging. Among all ferritins, particular interest is paid to the Archaeoglobus fulgidus one, due to its peculiar ability to associate/dissociate in physiological conditions. This protein has also been engineered to allow recognition of human receptors and used in vitro for the delivery of cytotoxic proteins with extremely promising results

    Ethylchloroformate derivatization for GC-MS analysis of resveratrol isomers in red wine

    Get PDF
    Resveratrol (3,5,40-trihydroxystilbene) is a natural compound that can be found in high concentrations in red wine and in many typical foods found in human diet. Over the past decades, resveratrol has been widely investigated for its potential beneficial effects on human health. At the same time, numerous analytical methods have been developed for the quantitative determination of resveratrol isomers in oenological and food matrices. In the present work, we developed a very fast and sensitive GC-MS method for the determination of resveratrol in red wine based on ethylchloroformate derivatization. Since this reaction occurs directly in the water phase during the extraction process itself, it has the advantage of significantly reducing the overall processing time for the sample. This method presents low limits of quantification (LOQ) (25 ng/mL and 50 ng/mL for cis- and trans-resveratrol, respectively) and excellent accuracy and precision. Ethylchloroformate derivatization was successfully applied to the analysis of resveratrol isomers in a selection of 15 commercial Italian red wines, providing concentration values comparable to those reported in other studies. As this method can be easily extended to other classes of molecules present in red wine, it allows further development of new GC-MS methods for the molecular profiling of oenological matrices

    Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells

    Get PDF
    Background: In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. Results: Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. Conclusion: The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells. Graphic abstract: [Figure not available: see fulltext.]
    corecore