61 research outputs found

    The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study

    Get PDF
    To evaluate the cardiovascular risk of polycystic ovary syndrome (PCOS), we investigated lipid profile, metabolic pattern, and echocardiography in 30 young women with PCOS and 30 healthy age- and body mass index (BMI)-matched women. PCOS women had higher fasting glucose and insulin levels, homeostasis model assessment score of insulin sensitivity, total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels, and TC/high density lipoprotein cholesterol (HDL-C) ratio and lower HDL-C levels than controls. Additionally, PCOS women had higher left atrium size (32.0 +/- 4.9 vs. 27.4 +/- 2.1 mm; P < 0.0001) and left ventricular mass index (80.5 +/- 18.1 vs. 56.1 +/- 5.4 g/m(2); P < 0.0001) and lower left ventricular ejection fraction (64.4 +/- 4.1 vs. 67.1 +/- 2.6%; P = 0.003) and early to late mitral flow velocity ratio (1.6 +/- 0.4 vs. 2.1 +/- 0.2; P < 0.0001) than controls. When patients and controls were grouped according to BMI [normal weight (BMI, >18 and <25 kg/m(2)), overweight (BMI, 25.1-30 kg/m(2)), and obese (BMI, >30 kg/m(2))], the differences between PCOS women and controls were maintained in overweight and obese women. In normal weight PCOS women, a significant increase in left ventricular mass index and a decrease in diastolic filling were observed, notwithstanding no change in TC, LDL-C, HDL-C, TC/HDL-C ratio, and TG compared with controls. In conclusion, our data show the detrimental effect of PCOS on the cardiovascular system even in young women asymptomatic for cardiac disease

    Isolation and preliminary characterization of a Chinese hamster ovary cell line with high-degree resistance to hydrogen peroxide.

    Get PDF
    We have isolated and conducted preliminary characterization of a cell line derived from the Chinese hamster ovary cell line AA8, which we have designated AG8 and which is highly resistant to the cytotoxic effects of H2O2 (approximately 17-fold when the H2O2 treatment was at 37 degrees; approximately 11-fold when the H2O2 treatment was at 4 degrees). AG8 cells were moderately (but significantly; P Be+) fast neutrons. As regards their biochemical status, AG8 and AA8 cells contain similar non-protein sulfhydryl levels per milligram of protein. Catalase activity (assessed by both spectrophotometry and polarography) was significantly higher in AG8 than in AA8 cells irrespective of whether enzyme activity was expressed per 10(6) cells (approximately 3.6-fold increase) or per milligram of protein (approximately 1.6-fold increase). AG8 cells also exhibited significantly greater glutathione reductase activity than wild-type cells when the data were expressed per 10(6) cells (approximately 2.9-fold) or per milligram of protein (approximately 1.3-fold). Glutathione peroxidase activity was immeasurably low in both cell lines. The susceptibility of the two cell lines to H2O2-mediated generation of DNA single-strand breaks (as measured by alkaline elution) indicated a slightly (approximately 1.5-fold) decreased yield in the resistant AG8 cell line. The two cell lines repaired these breaks with similar kinetics. In contrast, no measurable induction of DNA double-strand breaks (as measured by pulsed-field gel electrophoresis) was apparent in either cell line after survival-curve range concentrations of H2O2. On the basis of these data, it appears that the AG8 phenotype involves two previously identified resistance mechanisms, namely an adaptive component that may or may not involve increased antioxidant capacity, and a second component that does involve increased antioxidant (primarily catalase) capacity

    NMR Profiling of Exhaled Breath Condensate Defines Different Metabolic Phenotypes of Non-Cystic Fibrosis Bronchiectasis

    Get PDF
    Nuclear-magnetic-resonance (NMR) profiling of exhaled breath condensate (EBC) provides insights into the pathophysiology of bronchiectasis by identifying specific biomarkers. We evaluated whether NMR-based metabolomics discriminates the EBC-derived metabolic phenotypes ("metabotypes") of 41 patients with non-cystic fibrosis (nCF) bronchiectasis of various etiology [24 subjects with Primary Ciliary Dyskinesia (PCD); 17 patients with bronchiectasis not associated with PCD (nCF/nPCD)], who were compared to 17 healthy subjects (HS). NMR was used for EBC profiling, and Orthogonal Projections to Latent Structures with partial least-squares discriminant analysis (OPLS-DA) was used as a classifier. The results were validated by using the EBC from 17 PCD patients not included in the primary analysis. Different statistical models were built, which compared nCF/nPCD and HS, PCD and HS, all classes (nCF/nPCD-PCD-HS), and, finally, PCD and nCF/nPCD. In the PCD-nCF/nPCD model, four statistically significant metabolites were able to discriminate between the two groups, with only a minor reduction of the quality parameters. In particular, for nCF/nPCD, acetone/acetoin and methanol increased by 21% and 18%, respectively. In PCD patients, ethanol and lactate increased by 25% and 28%, respectively. They are all related to lung inflammation as methanol is found in the exhaled breath of lung cancer patients, acetone/acetoin produce toxic ROS that damage lung tissue in CF, and lactate is observed in acute inflammation. Interestingly, a high concentration of ethanol hampers cilia beating and can be associated with the genetic defect of PCD. Model validation with 17 PCD samples not included in the primary analysis correctly predicted all samples. Our results indicate that NMR of EBC discriminates nCF/nPCD and PCD bronchiectasis patients from HS, and patients with nCF/nPCD from those with PCD. The metabolites responsible for between-group separation identified specific metabotypes, which characterize bronchiectasis of a different etiology

    Metabolomics of COPD Pulmonary Rehabilitation Outcomes via Exhaled Breath Condensate

    Get PDF
    : Chronic obstructive pulmonary disease (COPD) is characterized by different phenotypes and clinical presentations. Therefore, a single strategy of pulmonary rehabilitation (PR) does not always yield the expected clinical outcomes as some individuals respond excellently, others discreetly, or do not respond at all. Fifty consecutive COPD patients were enrolled. Of them, 35 starting a 5-week PR program were sampled at admission (T0), after 2 (T2W) and 5 (T5W) weeks, while 15 controls not yet on PR were tested at T0 and T5W. Nuclear magnetic resonance (NMR) profiling of exhaled breath condensate (EBC) and multivariate statistical analysis were applied to investigate the relationship between biomarkers and clinical parameters. The model including the three classes correctly located T2W between T0 and T5W, but 38.71% of samples partially overlapped with T0 and 32.26% with T5W, suggesting that for some patients PR is already beneficial at T2W (32.26% overlapping with T5W), while for others (38.71% overlapping with T0) more time is required. Rehabilitated patients presented several altered biomarkers. In particular, methanol from T0 to T5W decreased in parallel with dyspnea and fatigue, while the walk distance increased. Methanol could be ascribed to lung inflammation. We demonstrated that the metabolic COPD phenotype clearly evolves during PR, with a strict relationship between clinical and molecular parameters. Methanol, correlating with clinical parameters, represents a useful biomarker for monitoring personalized outcomes and establishing more targeted protocols

    Orexin-A Prevents Lipopolysaccharide-Induced Neuroinflammation at the Level of the Intestinal Barrier

    Get PDF
    In states of intestinal dysbiosis, a perturbation of the normal microbiome composition, the intestinal epithelial barrier (IEB) permeability is increased as a result of the disruption of the epithelial tight junction protein network, in which occludin is mostly affected. The loss of IEB integrity promotes endotoxemia, that is, bacterial lipopolysaccharide (LPS) translocation from the intestinal lumen to the circulatory system. This condition induces an enhancement of pro-inflammatory cytokines, which leads to neuroinflammation through the gut-brain axis. Orexin-A (OX-A), a neuropeptide implicated in many physiological functions and produced mainly in the brain lateral hypothalamic area, is expressed also in several peripheral tissues. Orexin-producing neurons have been found in the myenteric plexus to project to orexin receptor 1 (OX-1R)-expressing enterocytes of the intestinal villi. In the present study we investigated the protective role of OX-A against LPS-induced increase of IEB permeability and microglia activation in both an in vivo and in vitro model of the gut-brain axis. By exploiting biochemical, immunocytochemical, immunohistochemical, and functional approaches, we demonstrate that OX-A preserves the IEB and occludin expression, thus preventing endotoxemia and subsequent neuroinflammation

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients
    • …
    corecore