90 research outputs found

    Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and E-oxidation

    Get PDF
    Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighte

    TRANSCRIPTION OF THE MITOCHONDRIAL CITRATE CARRIER GENE: ROLE OF SREBP-1, UPREGULATION BY INSULIN AND DOWNREGULATION BY PUFA

    Get PDF
    In this study we investigated the transcriptional role of the sterol regulatory element (SRE) present in the promoter of the mitochon- drial citrate carrier (CIC). We show that wild-type (but not mutated) CIC SRE cloned in front of the luciferase promoter confers tran- scriptional activation of the gene reporter. We also demonstrate that insulin activates, and polyunsaturated fatty acids (PUFA) inhibit, the gene reporter activity driven by the CIC promoter containing wild-type (but not mutated) SRE. Finally, both insulin treatment and overexpression of SRE binding protein (SREBP-1) increase the CIC transcript and protein levels, whereas PUFA have an opposite effect. These results show that SRE/SREBP-1 play a role in the transcriptional regulation of CIC by insulin and PUFA

    A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation

    Get PDF
    The chronic induction of inflammation underlies multiple pathological conditions, including metabolic, autoimmune disorders and cancer. The mitochondrial citrate carrier (CIC), encoded by the SLC25A1 gene, promotes the export of citrate from the mitochondria to the cytoplasm, a process that profoundly influences energy balance in the cells. We have previously shown that SLC25A1 is a target gene for lipopolysaccharide signaling and promotes the production of inflammatory mediators. We now demonstrate that SLC25A1 is induced at the transcriptional level by two key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), and such induction involves the activity of the nuclear factor kappa B and STAT1 transcription factors. By studying the down-stream events following SLC25A1 activation during signals that mimic inflammation, we demonstrate that CIC is required for regulating the levels of nitric oxide and of prostaglandins by TNFα or IFNγ. Importantly, we show that the citrate exported from mitochondria via CIC and its downstream metabolic intermediate, acetyl-coenzyme A, are necessary for TNFα or IFNγ to induce nitric oxide and prostaglandin production. These findings provide the first line of evidence that the citrate export pathway, via CIC, is central for cytokine-induced inflammatory signals and shed new light on the relationship between energy metabolism and inflammation

    Statins, fibrates and retinoic acid upregulate mitochondrial acylcarnitine carrier gene expression

    Get PDF
    In this study, we investigated the effects of statins, fibrates, 9-cis-retinoic acid and forskolin on the transcription of the mitochondrial carnitine/acylcarnitine carrier (CAC) gene. Statins, fibrates, retinoic acid and forskolin activate luciferase gene reporter activity driven by the -334/+3 bp region of the human CAC promoter containing wild-type (but not mutated) PPRE. These four agents also increase CAC transcript and protein levels. The combinations of statins and fibrates, retinoic acid and fibrates and fibrates and forskolin act synergistically. Mevalonate abolishes the activation of CAC gene expression by statins; the inhibitor of the PKA pathway H89 suppresses the stimulation of CAC gene expression by forskolin. Because CAC is essential for fatty acid beta-oxidation, the above results on the regulation of CAC gene expression provide a novel contribution to the understanding of the hypolipidemic action of statins, fibrates and retinoic acid

    Transcription of the mitochondrial citrate carrier gene: identification of a silencer and its binding protein ZNF224

    Get PDF
    In the last few years, we have been functionally characterizing the promoter of the human mitochondrial citrate carrier (CIC). In this study we show that CIC silencer activity extends over 26 bp (-595/-569), which specifically bind a protein present in HepG2 cell nuclear extracts. This transcription factor was purified by DNA affinity and identified as ZNF224. Overexpression of ZNF224 decreases LUC transgene activity in cells transfected with a construct containing the CIC silencer region, whereas ZNF224 silencing activates reporter transcription in cells transfected with the same construct. Moreover, overexpression and silencing of ZNF224 diminishes and enhances, respectively, CIC transcript and protein levels. Finally, ZNF224 is abundantly expressed in fetal tissues contrary to CIC. It is suggested that CIC transcriptional repression by ZNF224 explains, at least in part, the low expression of CIC in fetal tissues in which fatty acid synthesis is low

    Statins, fibrates and retinoic acid upregulate mitochondrial acylcarnitine carrier gene expression

    Get PDF
    In this study, we investigated the effects of statins, fibrates, 9-cis-retinoic acid and forskolin on the transcription of the mitochondrial carnitine/acylcarnitine carrier (CAC) gene. Statins, fibrates, retinoic acid and forskolin activate luciferase gene reporter activity driven by the -334/+3 bp region of the human CAC promoter containing wild-type (but not mutated) PPRE. These four agents also increase CAC transcript and protein levels. The combinations of statins and fibrates, retinoic acid and fibrates and fibrates and forskolin act synergistically. Mevalonate abolishes the activation of CAC gene expression by statins; the inhibitor of the PKA pathway H89 suppresses the stimulation of CAC gene expression by forskolin. Because CAC is essential for fatty acid beta-oxidation, the above results on the regulation of CAC gene expression provide a novel contribution to the understanding of the hypolipidemic action of statins, fibrates and retinoic acid

    Intestinal Acid Sphingomyelinase Protects From Severe Pathogen-Driven Colitis

    Get PDF
    Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory Th1 and Th17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium

    The mitochondrial citrate carrier: A new player in inflammation

    Get PDF
    The mitochondrial CIC (citrate carrier) catalyses the efflux of citrate from the mitochondrial matrix in exchange for cytosolic malate. In the present paper we show that CIC mRNA and protein markedly increase in lipopolysaccharide-activated immune cells. Moreover, CIC gene silencing and CIC activity inhibition significantly reduce production of NO, reactive oxygen species and prostaglandins. These results demonstrate for the first time that CIC has a critical role in inflammation

    Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (\u3cem\u3eSLC25A13\u3c/em\u3e): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells

    Get PDF
    Mitochondrial carriers catalyse the translocation of numerous metabolites across the inner mitochondrial membrane, playing a key role in different cell functions. For this reason, mitochondrial carrier gene expression needs tight regulation. The human SLC25A13 gene, encoding for the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), catalyses the electrogenic exchange of aspartate for glutamate plus a proton, thus taking part in many metabolic processes including the malate-aspartate shuttle. By the luciferase (LUC) activity of promoter deletion constructs we identified the putative promoter region, comprising the proximal promoter (−442 bp/−19 bp), as well as an enhancer region (−968 bp/−768 bp). Furthermore, with different approaches, such as in silico promoter analysis, gene silencing and chromatin immunoprecipitation, we identified two transcription factors responsible for SLC25A13 transcriptional regulation: FOXA2 and USF1. USF1 acts as a positive transcription factor which binds to the basal promoter thus ensuring SLC25A13 gene expression in a wide range of tissues. The role of FOXA2 is different, working as an activator in hepatic cells. As a tumour suppressor, FOXA2 could be responsible for SLC25A13 high expression levels in liver and its downregulation in hepatocellular carcinoma (HCC)
    • …
    corecore