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Abstract: Mitochondrial carriers catalyse the translocation of numerous metabolites across the inner
mitochondrial membrane, playing a key role in different cell functions. For this reason, mitochondrial
carrier gene expression needs tight regulation. The human SLC25A13 gene, encoding for the
mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), catalyses the electrogenic exchange of
aspartate for glutamate plus a proton, thus taking part in many metabolic processes including the
malate-aspartate shuttle. By the luciferase (LUC) activity of promoter deletion constructs we identified
the putative promoter region, comprising the proximal promoter (−442 bp/−19 bp), as well as an
enhancer region (−968 bp/−768 bp). Furthermore, with different approaches, such as in silico promoter
analysis, gene silencing and chromatin immunoprecipitation, we identified two transcription factors
responsible for SLC25A13 transcriptional regulation: FOXA2 and USF1. USF1 acts as a positive
transcription factor which binds to the basal promoter thus ensuring SLC25A13 gene expression in a
wide range of tissues. The role of FOXA2 is different, working as an activator in hepatic cells. As a
tumour suppressor, FOXA2 could be responsible for SLC25A13 high expression levels in liver and its
downregulation in hepatocellular carcinoma (HCC).

Keywords: SLC25A13; AGC2; gene expression; transcriptional regulation; FOXA2; USF1

1. Introduction

The human aspartate/glutamate carrier isoform 2 (AGC2), encoded by the SLC25A13 gene,
is a member of the mitochondrial carrier family [1,2]. This family of transporters translocates a
variety of metabolites across the mitochondrial membrane, thus linking biological and metabolic
processes occurring in both mitochondria and cytosol [3,4]. Humans possess another isoform of the
aspartate-glutamate carrier, AGC1, which is encoded by the SLC25A12 gene.

Both AGC1 and AGC2 exhibit a high substrate specificity for aspartate and glutamate and catalyse
an electrogenic exchange of intramitochondrial aspartate- for external glutamate plus a proton [5].
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AGCs are essential for the malate/aspartate shuttle, which transfers the reducing equivalents of NADH
plus H+ from cytosol to mitochondria [6] and is vital for aerobic glycolysis and alcohol metabolism,
as well as for the supply of aspartate from the mitochondria to the cytosol, which is necessary for urea
synthesis, purine and pyrimidine synthesis, protein synthesis and gluconeogenesis from lactate [7],
especially in cells with negligible capacity for taking up aspartate from the blood, such as hepatocytes
and neurons. Furthermore, the activity of AGCs in transfected mammalian cells is regulated by cytosolic
Ca2+ reacting with AGCs on the external side of the mitochondrial membrane [8,9]. Thus AGCs, like the
ATP-Mg/phosphate carriers [10–13], consist of two domains: the C-terminal domain containing all the
sequence features of the mitochondrial carrier family members and the N-terminal domain protruding
outside the mitochondrial matrix and containing EF (helix-loop-helix family)-hand Ca2+-binding
motifs [5]. In spite of their common features, AGCs differ in their tissue-expression pattern—AGC1
is expressed at high levels only in heart, brain and skeletal muscle and AGC2 in many tissues and
abundantly in the liver [14,15]. Furthermore, several studies highlighted distinctive functions of
AGCs in normal and pathological conditions, which are largely but not completely explained by their
different tissue expression. Mutations in SLC25A12 are responsible for a disease characterized by
developmental delay, epilepsy, hypotonia, hypomyelinization and decreased N-acetylaspartate in
brain [16,17], whereas mutations in SLC25A13 result in type II citrullinemia, which manifests with a
dislike for carbohydrates, the inability to consume alcohol, citrullinemia and hyperammonemia leading
to encephalopathy and neuropsyachiatric symptoms [18–20]. In particular, a specific involvement of
AGC1 in hepatocellular carcinoma (HCC) and N-acetylaspartate synthesis in mice lacking AGC1 has
been reported [21,22].

Due to the relevance of the mitochondrial carrier family members in metabolism, their activity
must be regulated in different tissues and under various physiological and pathological conditions. It
is not surprising, therefore, that the molecular mechanisms involved in gene expression regulation of
several mitochondrial carriers, as well as the changes of their gene expression occurring during cell
differentiation or in different tissues, diseases and cancer, have been thoroughly studied [23–31]. For
example, it has been shown that in neuronal cells the gene expression of SLC25A12 is primarily activated
by the transcription factor CREB (cAMP response element binding protein), upregulated in neuronal
differentiation and downregulated in neuroinflammation [32]. Furthermore, histone acetylation
switches on SLC25A12 gene in HCC cells [22]. In contrast, the molecular mechanisms regulating
SLC25A13 (AGC2) gene expression and its transcriptional control are still completely unknown.

In this work, we have investigated the transcriptional regulation of SLC25A13 and identified
two transcriptional factors, USF1 and FOXA2, that act as positive regulators of the SLC25A13 gene
expression. In particular, we have shown that FOXA2 works as a transcriptional activator and this might
be a possible mechanism responsible for SLC25A13 high expression levels in liver and downregulation
in HCC as well as its expression pattern in different tissues.

2. Results

2.1. Screening of SLC25A13 Gene Promoter Activity

To analyse the promoter activity of the 5′-flanking region of the human SLC25A13 gene, various
truncated versions of its promoter (from −1223 to −19 bp) were amplified and cloned into the luciferase
(LUC) reporter vector pGL3 basic. These constructs were transfected into HepG2, SK-N-SH and
HEK293 cell lines to determine the sequence elements required for SLC25A13 promoter activity.
The results represented in Figure 1A show that the removal of the nucleotides from −968 to −768 bp
(C3) displayed inhibited promoter activity though at varying levels. For instance, a reduction of
luciferase activity of about 95% in HepG2 and about 25% in SK-N-SH and HEK293 cells, respectively,
was found transfecting construct C3 compared to that of construct C1 transfected in HepG2 cells set to
100% (Figure 1A).
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Figure 1. (A) Deletion analysis of the 5′-flanking region of the human SLC25A13 gene. The deletion
mutants named C1-C6 were cloned into the pGL3 basic-LUC vector and tested for LUC activity in
transfected HepG2, HEK293 and SK-N-SH cells. pGL3 indicates the pGL3 basic-LUC vector alone.
Numbering indicates the extent of fragments, while bars indicate LUC activity. The values of construct
C1 transfected in HepG2 cells were set to 100%. Means± SD of three duplicate independent experiments
are shown. (B) Total RNAs extracted from HepG2, HEK293 and SK-N-SH cells were used to quantify
SLC25A13 mRNA by real-time polymerase chain reaction (PCR). Means ± S.D. of four replicate
independent real-time PCR experiments are shown. Where indicated, differences between samples and
control were significant (**p < 0.01). AGC2 and β-actin proteins of HepG2, HEK293 and SK-N-SH cells
were immunodecorated with specific antibodies. The Western blot analysis is representative of three
independent experiments with similar results.

In all cell lines, deletion from −767 to −594 bp (C4) almost restored SLC25A13 gene promoter
activity that was further increased with the deletion of −593 to −443 bp (C5). Finally, deletion from
−442 to −272 bp (C6) led to a drop in luciferase activity (Figure 1A) in HepG2 as well as in SK-N-SH
and HEK293 cells. Because the luciferase activity driven by C5 is the highest within the deletion
constructs and goes down significantly in all tested cell lines when driven by C6, we consider the
region up to −272 bp as the proximal promoter containing regulatory elements able to drive the basal
promoter activity of the human SLC25A13 gene. In summary, we identified an activation domain in
HepG2 cells (−968/−768 bp) and found that the −442/−272 bp fragment upstream transcription starting
site contains a minimal promoter working in different cell lines.

Next, we performed an in silico analysis of the 1200 bp of the human SLC25A13 promoter region.
This analysis revealed the lack of typical TATA box and the presence of a CCAAT box (−225/−229),
the initiator element (INR) at −58/−51 bp, a downstream core promoter element (DPE) at −40/−35 bp,
a canonical E-box (CACGTG) at –416/−411 bp as well as a number of putative cis-regulatory elements
for several transcriptional factors. In addition, we measured SLC25A13 mRNA and AGC2 protein
basal levels with real-time polymerase chain reaction (PCR) and Western-blot analysis, respectively,
in HepG2, SK-N-SH and HEK293 cell lines. Figure 1B shows that HepG2 cells had the highest levels of
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AGC2 expression while SK-N-SH cells the lowest levels. Given that HepG2 cells showed the strongest
promoter activity together with the highest endogenous expression of the SK-N-SH gene, we used
these cells for further investigations about the molecular mechanisms involved in SLC25A13 gene
expression regulation.

2.2. Identification and Functionality of the USF1 Cis-Element in SLC25A13 Gene Promoter

Given that the E-box motif usually interacts with the USF (Upstream Stimulating Factor) [33] in
genes lacking TATA box [34], we checked for the contribution of E-box and USF in regulating SLC25A13
gene expression. To this aim, different experiments were performed. First, we carried out a ChIP-qPCR
(chromatin immunoprecipitation-PCR) analysis on chromatin extracted from HepG2 cells by using
anti-USF1 antibody. As shown in Figure 2A, USF1 was bound to −498/−343 bp region of the SLC25A13
promoter. Without the anti-USF1 antibody addition, no immunoprecipitation was observed (Figure 2A,
lane NoAb). Second, gene silencing experiments using siRNA targeting the human USF1 showed that
luciferase activity, as well as AGC2 transcript and protein levels, were reduced as compared to those
in the control cells (Figure 2B,C). Third, HepG2 cells were transfected with pGL3basic-C5 construct
in the presence or absence of pcDNA3 vector containing the USF coding sequence. As shown in
Figure 2D, luciferase activity was significantly enhanced in cells transfected with pGL3basic-C5 and
pcDNA3-USF1 compared to cells transfected with pGL3basic-C5 alone. By contrast, no increase in
luciferase activity was observed in cells transfected with the pGL3basic-C5 containing the mutated
USF binding site (M), with or without the pcDNA3-USF1 expression vector (Figure 2D). Consistently,
USF1 induced an increase of SLC25A13 mRNA and AGC2 protein (Figure 2E). Fourth, we performed
gel-shift experiments by using wild-type and mutated E-box (−419/−409 bp) responsive element to
support the presence—in this region of the SLC25A13 gene promoter—of an active cis-element bound
by HepG2 nuclear extracts (Supplementary Figure S1). These results clearly show that USF1 binds
to the −419/−409 bp region of the human SLC25A13 promoter probably working as an ubiquitous
transcriptional factor.

Del Arco et al. showed that AGC2 was differently expressed during differentiation in rat liver [15].
Because USF1 is involved in transcription in development [33] we asked whether USF1 plays a role in
AGC2 expression during liver development. For this, we measured the RNA levels of USF1 and AGC2
genes in foetal and adult liver cells (Figure 2F). Figure 2F shows a 1- and 3- fold overexpression of
USF1 and AGC2 mRNAs, respectively, in adult compared to foetal liver tissue (set to 100%). These
data suggest that USF1 could control SLC25A13 gene expression during differentiation of liver cells.
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Figure 2. Effect of USF1 on SLC25A13 gene expression. (A) ChIP-qPCR assay shows the amplification
bands of PCR using the specific primers suitable to amplify the −498/−343 bp region of the SLC25A13
gene promoter. M: Marker, lane I: Input, lane USF1: amplification PCR band after ChIP with specific
antibody for human USF1, lane NoAb: without the anti-USF1 antibody addition. (B) Luciferase
activity was measured in HepG2 cells co-transfected with C5 construct (−442/−19 of the SLC25A13 gene
promoter) and siRNA targeting human USF1 (+, black bar) or control siRNA (-, white bar). (C) Total
RNA extracted from HepG2 cells treated without (white bar) or with (black bar) siRNA against human
USF1 was used to quantify SLC25A13 mRNA by real-time PCR. Immunodecoration was performed
with specific antibodies for AGC2 and β-actin proteins in HepG2 cells treated under the conditions
described. (D) Luciferase activity of HepG2cells co-transfected with pGL3 basic-LUC vector containing
the −442/−19 SLC25A13 promoter region wild-type (W) or mutated (M) in USF1 site and pcDNA3-USF1
(+: black bar) or empty pcDNA3 (-: white bar). (E) Total RNA extracted from HepG2 cells transfected
with pcDNA3-USF1 (+) or empty pcDNA3 (-) was used to quantify SLC25A13 mRNA by real-time
PCR. AGC2 and β-actin of HepG2 cells transfected with pc-DNA3-USF1 (+) or empty pcDNA3 (-) were
immunodecorated with anti-AGC2 and anti-β-actin antibodies. (F) Total RNA from liver foetal cells
(white bar) and adult (black bar) was used to quantify USF1 and SLC25A13 mRNAs by real-time PCR.
For panels (B–F), means ± SD of three duplicate independent experiments are shown; all differences
between samples and relative controls were significant (*p < 0.05 or **p < 0.01 one-way ANOVA
followed by Student’s t-test).

2.3. Identification and Functionality of the FOXA2 Cis-Element in SLC25A13 Gene Promoter

The construct C2, showing a high luciferase activity in HepG2 cells, contained a FOXA transcription
factor element at −928/−918 bp. Since FOXA transcription factors are actively involved in the control
of hepatic and pancreatic gene expression and metabolism [35], we focused our investigation on FOXA
as a positive regulatory factor of SLC25A13 gene expression. Firstly, HepG2 cells were transfected
with siRNA targeting not only FOXA2 but also FOXA1 and FOXA3—the other members of FOXA
family [36]—having tested that their silencing efficiency was of about 74%, 70% and 77%, respectively
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(Supplementary Figure S2). Seventy-two hours after transfection, the luciferase activity was reduced
by about 40%, 70% and 50% in HepG2 cells transfected with siFOXA1, siFOXA2 and siFOXA3,
respectively, as compared to control cells (Figure 3A). Consistently, when FOXA genes were silenced,
both AGC2 transcript and protein levels were reduced in knockdown cells compared to wild-type
HepG2 cells (Figure 3B). Given that FOXA2 gene silencing had the biggest impact on both SLC25A13
gene promoter activity and ACG2 gene expression than the other FOXA genes, we focused our
further analyses on this isoform. HepG2 cells were transfected with C2 construct in the presence or
absence of pcDNA3 vector containing FOXA2 coding sequence (pcDNA3-FOXA2) and the relative
luciferase activity was measured. Reporter activity was enhanced by about 100% in cells transfected
with pGL3basic-C2 and pcDNA3-FOXA2 compared to cells transfected with pGL3basic-C2 alone
(Figure 3C). In contrast, the luciferase activity was strongly reduced in HepG2 transfected with the
mutated FOXA binding site (M) promoter-LUC vector, with or without the pcDNA3-FOXA2 expression
vector (Figure 3C). Consistently, SLC25A13 mRNA and AGC2 protein significantly increased in HepG2
transfected with pcDNA3-FOXA2 (Figure 3D). Furthermore, electrophoretic mobility shift (EMSA)
assay with wild-type and mutated FOXA responsive element further confirmed the specificity of
DNA-binding to FOXA2 as a supershift was observed when a specific antibody against FOXA2 was
used (Supplementary Figure S3). In addition, FOXA2 binding to the endogenous SLC25A13 gene
promoter was confirmed using the ChIP-qPCR assay. Figure 3E shows that chromatin extracted from
HepG2 cells was immunoprecipitated by using a specific anti-FOXA2 antibody. These results clearly
demonstrate that AGC2 expression is mainly affected by FOXA2 and the other isoforms exert a lower
effect. Finally, we found a strong binding of FOXA2 transcription factor to −928/−918 bp region of
the human SLC25A13 required for SLC25A13 gene activation (results not shown). All together these
findings strengthen the link between SLC25A13 and FOXA2 expression patterns and suggest FOXA2
to be a transcriptional factor responsible for SLC25A13 upregulation in liver.

Interestingly, Wang et al. [37] reported a low expression of FOXA2 in hepatocellular carcinoma.
Since HepG2 are hepatocarcinoma cells we wondered whether the SLC25A13 gene was also
under-expressed in cancer. To this end, we measured expression levels of both FOXA2 and AGC2
in normal and hepatocellular carcinoma (HCC) cells. Figure 3F reveals a significant decrease in
FOXA2 and AGC2 RNAs by about 30% and 65%, respectively, in cancer cells compared to normal cells.
In HepG2 cells FOXA2 and AGC2 levels were also decreased as compared to normal liver cells.
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Figure 3. Effect of FOXA2 on SLC25A13 gene expression. (A) HepG2 cells co-transfected with pGL3
basic-LUC vector containing the −968/−19 SLC25A13 gene promoter region and siRNA targeting
human FOXA1, FOXA2 and FOXA3 or with control siRNA (-: white bar) were assayed for LUC activity.
(B) Total RNA extracted from HepG2 cells transfected with siRNA targeting human FOXA1, FOXA2
and FOXA3 or with control siRNA (-: white bar) was used to quantify SLC25A13 mRNA by real-time
PCR. AGC2 and β-actin proteins of transfected HepG2 cells were immunodecorated with specific
antibodies. (C) HepG2 cells co-transfected with pGL3 basic-LUC vector containing the wild-type
(W: white bar) or mutated (M: black bars) −968/−19 SLC25A13 gene promoter region wild- type and
with pcDNA3-FOXA2 (+) or empty pcDNA3 (-) were assayed for LUC activity. (D) Total RNA extracted
from HepG2 cells transfected with pcDNA3-FOXA2 (black bar) or empty pcDNA3 (white bar) was used
to quantify SLC25A13 mRNA by real-time PCR. AGC2 and β-actin of transfected HepG2 cells were
immunodecorated with specific antibodies. (E) ChIP-qPCR assay of FOXA2 binding to the endogenous
SLC25A13 gene promoter shows the −1040/−864 bp region amplification band. M: Marker, lane I:
Input, lane FOXA2: amplification PCR band after ChIP with a specific antibody for human FOXA2,
lane NoAb: without the anti-FOXA2 antibody addition. (F) Total RNA extracted from normal (white
bar) and hepatocellular carcinoma (HCC) (black bar) cells was used to quantify FOXA2 and SLC25A13
mRNAs by real-time PCR. FOXA2, AGC2 and β-actin proteins of primary hepatocytes and HepG2
cells were immunodecorated with specific antibodies. In (A–D) and (F) panels, means ± SD of three
duplicate independent experiments are shown; all differences between samples and relative controls
were significant (*p < 0.05 or **p < 0.01 one-way ANOVA followed by Student’s-t-test).

2.4. Exogenous FOXA2 Induces Transcription of SLC25A13 in SK-N-SH Cells

To further confirm the specificity of FOXA2 as an activator of the SLC25A13 gene we overexpressed
FOXA2 in SK-N-SH. First, we checked that none of the FOXA family isoforms (FOXA1, FOXA2 and
FOXA3) were present in SK-N-SH. Indeed, real-time PCR performed on mRNA extracted from SK-N-SH
cells showed the absence of FOXA1, FOXA2 and FOXA3 transcription factors (Figure 4A). In these
experiments, HepG2 cells were taken as the reference for each isoform. Second, upon expression
of FOXA2 in SK-N-SH, the luciferase activity—relative to the SLC25A13 gene promoter—increased
by four times compared to the cells transfected with pGL3-basic alone (Figure 4B). This effect was
abolished using the construct harbouring a mutated FOXA2 responsive element (Figure 4B). These
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findings clearly indicate that FOXA2 works as a strong activator of SLC25A13 gene expression in
various cell lines.

Figure 4. Activation of SLC25A13 gene by FOXA2. (A) FOXA1, FOXA2 and FOXA3 mRNA levels in
HepG2 and SK-N-SH cells. (B) HepG2 and SK-N-SH cells co-transfected with pGL3 basic-LUC vector
containing C2 construct (968/−19 of the SLC25A13 gene promoter region) wild-type (W) or mutated (M)
in FOXA2 binding site and with pcDNA3-FOXA2 (+: black bars) or empty pcDNA3 (-: white bar) were
assayed for LUC activity. Where indicated, differences between samples and relative controls were
significant (*p < 0.05 or **p < 0.01 one-way ANOVA followed by Student’s t-test).

2.5. Synergy between FOXA2 and USF1 in Regulating SLC25A13 Gene Expression and AGC2 Function

The results presented above indicate a primary role for FOXA2 and USF1 transcription factors in
the regulation of SLC25A13 gene expression. We therefore wondered if FOXA2 and USF1 interplay in
activating SLC25A13 transcription and in turn regulating AGC2 function. To this end, we transfected
HepG2 cells with C2 construct—containing binding sites for both FOXA2 and USF1 factors—wild-type
or mutated in FOXA or UFS sites alone or together and measured LUC activity under each condition.
SLC25A13 promoter activity strongly decreased when a single site was mutated and was almost absent
in the presence of a double mutation (Figure 5A, white bars). When C2 construct was transfected
together with pcDNA3-FOXA2 and pcDNA3-USF1, we observed a great increase of LUC activity by
about 100% (Figure 5A wt, black bars). This effect was abolished in the presence of a single mutation
at level of FOXA or USF binding site (Figure 5A mutFOXA or mutUSF black bars). Thus, a single
mutation in one of these binding sites is enough to completely abolish SLC25A13 promoter activity.
These results support a collaborative interplay of both FOXA2 and USF1 in driving high levels of
SLC25A13 gene expression.

Next, we investigated the effect of FOXA2 and USF1 on AGC2 activity. As AGC2 is an essential
component of the malate/aspartate shuttle which transfers the reducing equivalents of NADH plus H+

from cytosol to mitochondria [6], we measured the NAD+/NADH ratio in HepG2 cells transfected
with siRNA against FOXA1 and USF1 alone or in combination. As a control, we silenced SLC25A13
and observed a significant decrease in NAD+/NADH ratio by about 50% in agreement with the role of
AGC2 in regulating NADH redox status (Figure 5B). When FOXA2 or USF1 genes were silenced we
also obtained a great reduction in NAD+/NADH ratio; this reduction was even greater in the presence
of FOXA2/USF1 double gene silencing (Figure 5B). These findings suggest a role for FOXA2 and USF1
as regulators of AGC2 activity thus implying their control of the NADH redox status.
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Figure 5. (A) Synergy between FOXA2 and USF1. HepG2 cells co-transfected with pGL3 basic-LUC
vector containing C2 construct (−968/−19 of the SLC25A13 gene promoter region) wild-type (wt)
or mutated (mutFOXA, mut USF and mut FOXA/USF) in combination with pcDNA3-FOXA2 and
pcDNA3-USF1 (+: black bars) or empty pcDNA3 (-: white bars) were assayed for LUC activity.
(B) FOXA2 and USF1 effect on AGC2 activity. Quantification of the NAD+/NADH ratio in HepG2 cells
transfected with siRNA against FOXA1 and USF1 alone or in combination. siRNA against SLC25A13
was used as control. Where indicated, differences between samples and relative controls were significant
(*p < 0.05 or **p < 0.01 one-way ANOVA followed by Student’s t-test).

3. Discussion

The physiological role of AGC2 and its different tissue distribution (particularly high in liver)
suggest that its expression might be regulated at a transcriptional level in a specific tissue and cell-type
manner. In order to elucidate human SLC25A13 gene regulation we focused our investigation on the
1233 bp upstream of the ATG codon, where we identified the SLC25A13 promoter region. The basal
promoter activity of SLC25A13 is contained in a 442 bp fragment upstream of the transcriptional
start site, as confirmed by the reduction of luciferase activity when this region was deleted from
the experimental constructs employed in HepG2, SK-N-SH and HEK293 cell lines. The SLC25A13
promoter structure is interesting as both INR and E-box (CACGTG) sequences interact with HLH
transcription factors, such as USFs, in TATA-less and pyrimidine-rich promoter [38,39]. Consistent
with this promoter model structure, our findings show a functional binding of USF1 to the E-box both
in-vivo and in EMSA experiments. Interestingly, the USF binding site is present in both human and rat
mitochondrial aspartate/glutamate carrier isoform 2 gene promoters. The USFs bHLH-leucine zipper
transcription factors are ubiquitously expressed and act as key regulatory factors of the transcriptional
machinery mediating recruitment of chromatin remodelling enzymes, interacting with co-activators
and members of the pre-initiation complex [40]. Given that an E-box motif binding USF1 is located in
the region corresponding to the basal promoter activity, it is likely that the USF1 factor is involved in
the initial steps of SLC25A13 gene transcription, such as the pre-initiation complex. However, USF1
could also be involved in coordinating the regulation of lipid and glucose metabolism by a mechanism
not yet understood. USF1 is decreased by fasting and increased by refeeding [41]. In culture cells,
high extracellular glucose levels enhance USF1 expression [42–45]. Increase of USF expression in
glucose treated cells is consistent with the role of AGC2 in glycolysis because, as component of the
malate/aspartate shuttle, AGC2 transfers the reducing equivalents of NADH plus H+ from cytosol
to mitochondria [6]. Furthermore, our data also show differential expression of SLC25A13 in foetal
(low) and adult (high) cells in parallel with differential expression USF. It might be speculated that
increasing expression of USF in adult cells compared to foetal cells also affects AGC2 expression.
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It is known that USFs work in tandem with general or specific transcription factors, including
FOXAs [46,47]. By means of different approaches including ChIP, gene silencing and in silico analysis
we identified the promoter sequence located at −928 bp to −918 bp as the binding site for FOXA2.
Indeed, also other FOXA family members (FOXA1 and FOXA3) affect the SLC25A13 gene expression,
although to lower extent than FOXA2. The FOXA subfamily of winged helix/forkhead box (Fox)
transcription factors is involved in the regulation and differentiation of metabolic tissues, such as liver,
pancreas and adipose tissue, acting as factors, the binding to promoters of which enables chromatin
access to other tissue-specific transcription factors [48]. In particular, FOXA2 is essential for glucose
and lipid homeostasis [49,50]. In fact, several genes encoding hepatic enzymes involved in metabolism
during fasting and energy deprivation contain FOXA2-binding sites [51–53]. Examples include the
gluconeogenic enzymes phosphoenopyruvate carboxychinase (PepCk) [54], glucose-6-phosphatase
(G6pc) [55] and tyrosine aminotransferase (Tat) [56], as well as enzymes of lipid catabolism, such as
carnitine palmitoyltransferase 1, carnitine acylcarnitine translocase, hydroxyacyl-CoA dehydrogenase
and lipoprotein lipase and of ketogenesis, such as 3-hydroxy-3-methylglutaryl-CoA synthase 1 [24,50].
Our results further suggest that FOXA2 does not contribute to SLC25A13 gene expression in some
non-hepatic cells, such as SK-N-SH cells. This contention is supported by the experimental observations
reported in this study and in particular by the lack of FOXA transcription factors in SK-N-SH cells
and by the very high increase in gene reporter activity obtained by FOXA2 overexpression in these
cells. Therefore, this study may explain at the molecular level, at least in part, the differences in AGC2
expression levels between liver and other tissues [57]. Interestingly, we also detected the presence
of FOXA2 binding site in the rat (Rattus Norvegicus) slc25a13 gene promoter and its absence in the
AGC1/SLC25A12 gene promoter. Furthermore, identification of FOXA2 as specific enhancing protein
might be useful as therapeutic target to increase the expression of AGC2 in patients with type II
citrullinemia showing a mild phenotype, as reported for other mitochondrial carrier deficiencies [58].

In the light of our findings, it is clear that USF1 and FOXA2 are positively regulators of SLC25A13
gene expression. It is likely that both factors interact each other as cotransfection of a FOXA2 binding
site mutated version with both USF1 and FOXA2 transcription factors causes no increase of SLC25A13
promoter activity. Noteworthy, USF1 and FOXA2 single or double gene silencing significantly reduces
the NAD+/NADH ratio, that is, negatively affects AGC2 function by regulating its transcription.
Obviously, it cannot be excluded that other co-factors and transcription factor-binding sites participate
in the regulation of the SLC25A13 gene expression, beyond the central role played by FOXA2 and USF1.

This study sheds some light on the mechanisms underlying the SLC25A13 gene expression
which result to be very different than those controlling SLC25A12 at least in hepatocarcinoma.
AGC2 (at the level of mRNA and protein) is significantly downregulated in liver cancer cells,
whereas AGC1 is upregulated by an epigenetic mechanism consisting in histone hyperacetylation [22].
Our findings demonstrate that FOXA2 downregulates SLC25A13 expression and function, in agreement
with the reported role of FOXA2 as tumour suppressor in HCC [59,60]. In this regard, Oncomine
(https://www.oncomine.org) database used for an in-depth analysis of SLC25A13 and FOXA2 mRNA
levels reveal a strong downregulation of both genes in different types of tumours (Affimetrix Human
Genome HT U133A Array, Human Genome U133A 2.0 Array) when compared to normal tissues [61–63].
So, it can be hypothesized that FOXA2 gene expression decreases in HCC and in turn reduces SLC25A13
transcription levels.

The reasons for SLCA25A13 downregulation in HCC are not clear. However, it appears that AGC2
is not essential for cancer cells’ proliferation as SLCA25A13 gene silencing does not affect HCC cell
proliferation [22]. On the contrary, SLCA25A12 gene silencing significantly affects liver cancer cell
growth and migration suggesting a specific role for AGC1 in HCC [22]. Thus, it is likely that both
AGC1 and AGC2 are implicated in the malate/aspartate shuttle but AGC1 plays also a more specific
role in the biosynthesis of nucleotides [22]. As cancer cells rely on lactate dehydrogenase and cytosolic
malate dehydrogenase 1 in regenerating cytosolic NAD+ [64], a downregulation of SLC25A13 does
not compromise HCC cell survival. Moreover, preliminary quantification data by NMR in SLC25A13

https://www.oncomine.org
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silenced HCC cells indicate a decrease of glutamate levels compared to control cells (data not shown),
suggesting that SLC25A13 gene silencing induces the conversion of glutamate in α-ketoglutarate via
mitochondrial glutamate dehydrogenase (GDH) thus sustaining TCA cycle.

In conclusion, we have characterized the promoter of the human SLC25A13 gene and have
demonstrated, for the first time, that the transcriptional factors FOXA2 and USF1 are involved in the
positive regulation of SLC25A13 gene transcription. Furthermore, we have shown that FOXA2 works
as an enhancing factor and this is most likely the mechanism responsible for SLC25A13 high expression
levels in liver and its downregulation in HCC.

4. Materials and Methods

4.1. Construction of Plasmids.

Progressive deletion fragments of the −1233/−19 bp region of the AGC2 gene promoter, with or
without mutations in FOXA or USF binding sites, were obtained by PCR. They were cloned into the
pGL3 basic-LUC vector upstream of the LUC gene coding sequence (Promega Madison, WI, USA).
FOXA2 (pcDNA3-FOXA2) and USF1 (pcDNAs-USF1) expression vectors were obtained by cloning the
human FOXA2 cDNA (Accession No. NM_004496.2) and the human USF1 cDNA (Accession number
NM_007122), respectively, into the pcDNA3.1 vector (Thermo Fisher Scientific, San Jose, CA, USA).

The sequences of primers used to generate the mutated FOXA and USF sequences of the SLC25A13
gene in the −932/−909 bp and −424/−404 bp regions, respectively, are shown in Table 1.

Table 1. List of primers used to generate the mutated FOXA and USF binding sequences.

Name Sequence

wtFOXA 5′-TGCTTGTTTATTTATTTTAGTAGG-3′

mutFOXA 5′-TGCTTGGGGAGGGATGGTAGTAGG-3′

wtUSF 5′-GCGGGGTCACGTGTCCCTGT-3′

mutUSF 5′-GCGGGGTACCTGTTCCCTGT-3′

* Mutated nucleotides are underlined.

4.2. Cell Culture, RNA Interference and Transient Transfection.

HepG2 and HEK293 cells (Sigma–Aldrich, St Louis, MO, USA) were maintained in high glucose
DMEM (Dulbecco’s modified Eagle’s medium) containing 10% (v/v) fetal bovine serum, 2 mM
L-glutamine, 100 U penicillin and 100 lg/mL streptomycin at 37 ◦C in 5% CO2. SK-NSH cells (ICLC,
Interlab Cell Line Collection) were grown in RPMI 1640 medium (Roswell Park Memorial Institute) at
37 ◦C in 5% CO2. Primary human hepatocytes were grown in a hepatocyte culture medium according to
the manufacturer’s instructions (Lonza, Walkersville, MD, USA). Transient transfection was performed
as reported [65] using 0.5 µg of pGL3 basic-LUC vector containing the full-length −1233/−19 bp region
of the AGC2 gene promoter or deletion fragments of this region and 10 ng of pRL-CMV (Promega)
to normalize the extent of transfection. Transfected cells were assayed for LUC activity using the
Dual-Luciferase® Reporter Assay System (Promega). The luminescence was measured using GloMax
plate reader (Promega).

For USF1 and FOXA2 overexpression, HepG2 cells were transfected using 0.5 µg of pcDNA3–USF1
or pcDNA3-FOXA2 vector or both. In RNA interference experiments, the specific pre-designed small
interfering RNAs (siRNAs) targeting human FOXA1 (s6689, Thermo Fisher Scientific), FOXA2 (s6691,
Thermo Fisher Scientific) and FOXA3 (s6693, Thermo Fisher Scientific) were transfected in HepG2 cells
using siPORT NeoFX Transfection Agent (Thermo Fisher Scientific). A siRNA (Cat. No. C6A-0126,
Thermo Fisher Scientific) with no significant similarity to human, mouse or rat gene sequences was
used as negative control.
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4.3. Reverse Transcriptase-PCR and Real-Time PCR

Total RNA was extracted from 1 × 106 HepG2, HEK293 and SK-N-SH cells or purchased HCC cells
(Rockville, MD, USA); normal adult and foetal liver RNAs were purchased from Origene (Rockville,
MD, USA); and reverse transcription was performed as reported [66]. Real-time PCR was conducted
as previously described [67]. Assay-on-demand for human AGC2 (Hs00185185_m1), human FOXA1
(Hs00293689_s1), human FOXA2 (Hs00232764_m1), human FOXA3 (Hs00270130_m1) and human
β-actin (4326315E) were purchased from Thermo Fisher Scientific. All transcript levels were normalized
against the β-actin expression levels. To this end, the difference between β-actin Ct value and the target
gene Ct value was used to generate a ∆Ct value. ∆∆Ct was calculated by subtracting the mean value
of ∆Ct of the control from ∆Ct value. Finally, fold changes in each gene expression were calculated via
the comparative 2−∆∆Ct method using the formula: 2−∆∆Ct = ∆CtBS patient − ∆Ctcontrol.

4.4. Western Blotting

Western blot analysis was performed as reported previously [68]. Briefly, proteins were
electroblotted onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA) and treated with
anti-AGC2 (sc-100937, Santa Cruz Biotechnology, Santa Cruz, CA) or anti-β-actin (sc-47778, Santa Cruz
Biotechnology) antibody. The immunoreactions were detected by the Immobilon western ECL system
(Millipore, Burlington, MA, USA). Immunolabeled protein bands were analysed by densitometry using
ImageJ quantitative software (NIH, Bethesda, MD, USA) and normalized to β-actin levels.

4.5. Chromatin Immunoprecipitation

ChIP experiments were performed as previously reported [69]. Briefly, 2 × 107 of HepG2 cells
were fixed by 1% formaldehyde at 37 ◦C for 10 min; afterwards, the cells were lysed and sheared
by sonication in a 1% SDS lysis buffer to generate cellular chromatin fragments of 400–500 bp.
The chromatin was immunoprecipitated for 14–16 h at 4 ◦C using specific antibodies to FOXA2
(sc-6554X, Santa Cruz Biotechnology) and to USF1 (sc-229X Santa Cruz Biotechnology). After reverse
cross-linking, chromatin immunoprecipitates were purified, then 2 µL of each sample was analysed
by PCR (35 cycles) using a forward FOXA2 primer (5′-CCTGATCACCACTGTCTTAT-3′) and a
reverse primer (5′-CCGGGTCAAAAGACTTCC-3′) suitable to amplify the −1040/−864 bp region
of the SLC25A13 promoter and a forward USF1 primer (5′-CCTCAGGTGACGGGCTTG-3′) and a
reverse primer (5′-GTGATCCAGCGGCCTCTG-3′) suitable to amplify the −498/−343 bp region of the
SLC25A13 promoter.

4.6. Intracellular NAD+/NADH Quantification

NAD+/NADH ratio was determined by using a NAD/NAD Quantification Kit (Sigma–Aldrich)
according to the manufacturer’s instructions. Briefly, HepG2 cells were seeded in 24-well plates and
gene silencing experiments were carried out as described above. Wells were washed once with ice
cold PBS. For each assay a pellet from 2 x105 cells obtained by centrifuging at 2000 rpm for 5 min was
used. Afterwards, cells were lysed in NADH/NAD Extraction Buffer by freeze/thawing for 2 cycles
of 20 min on dry ice followed by 10 min at room temperature. Then samples were centrifuged at
13,000 rpm for 10 min to remove insoluble material. Part of the cell lysate was incubated at 60 ◦C for
30 min to produces NADH. Enzyme mix cycling buffer and developer were added according to the
manufacturer’s protocol. Plates were incubated for 3 h and absorbance was read at 450 nm using the
GloMax plate reader (Promega).

4.7. Statistical Analysis

Results are presented as means ± S.D. of, at least, four independent experiments. Differences
between means of samples were compared using the one-way ANOVA test. Subsequently, where
indicated, the Student’s t-test was used as a post hoc test to compare differences between means of
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samples and relative controls. A 5% or 1% significance level and 95% (*) or 99% (**), respectively,
confidence intervals were used in the statistical analysis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/8/1888/s1.

Author Contributions: Conceived and designed the experiments: P.C., F.P. and V.I. Performed the experiments:
P.C., S.T., F.D.S., I.P., M.A.C.M., D.I. Performed in silico analysis: Y.N.F.M., I.P. and G.M. Analyzed the data: P.C.,
S.T. and F.D.S. Contributed reagents and materials: S.T., F.P. and V.I. Wrote the paper: P.C., S.T., Y.N.F.M., F.P.
and V.I.

Funding: This research was supported by Grants from University of Basilicata to VI (grant number 3010101) and
to ST (grant number 102050101), University of Bari (grant number 00405815).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Palmieri, F. The mitochondrial transporter family slc25: Identification, properties and physiopathology.
Mol. Aspects Med. 2013, 34, 465–484. [CrossRef]

2. Palmieri, F. Mitochondrial transporters of the slc25 family and associated diseases: A review. J. Inherit.
Metab. Dis. 2014, 37, 565–575. [CrossRef]

3. Palmieri, F.; Pierri, C.L. Mitochondrial metabolite transport. Essays Biochem. 2010, 47, 37–52. [CrossRef]
[PubMed]

4. Palmieri, F.; Monne, M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review.
Biochim. Biophys. Acta 2016, 1863, 2362–2378. [CrossRef]

5. Palmieri, L.; Pardo, B.; Lasorsa, F.M.; del Arco, A.; Kobayashi, K.; Iijima, M.; Runswick, M.J.; Walker, J.E.;
Saheki, T.; Satrustegui, J.; et al. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in
mitochondria. EMBO J. 2001, 20, 5060–5069. [CrossRef]

6. Indiveri, C.; Kramer, R.; Palmieri, F. Reconstitution of the malate/aspartate shuttle from mitochondria.
J. Biol. Chem. 1987, 262, 15979–15983. [PubMed]

7. Palmieri, F. The mitochondrial transporter family (slc25): Physiological and pathological implications.
Pflugers Arch. 2004, 447, 689–709. [CrossRef]

8. Lasorsa, F.M.; Pinton, P.; Palmieri, L.; Fiermonte, G.; Rizzuto, R.; Palmieri, F. Recombinant expression of the
Ca(2+)-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated
Chinese hamster ovary cells. J. Biol. Chem. 2003, 278, 38686–38692. [CrossRef] [PubMed]

9. Thangaratnarajah, C.; Ruprecht, J.J.; Kunji, E.R. Calcium-induced conformational changes of the regulatory
domain of human mitochondrial aspartate/glutamate carriers. Nat. Commun. 2014, 5, 5491. [CrossRef]
[PubMed]

10. Fiermonte, G.; De Leonardis, F.; Todisco, S.; Palmieri, L.; Lasorsa, F.M.; Palmieri, F. Identification of the
mitochondrial atp-mg/pi transporter. Bacterial expression, reconstitution, functional characterization and
tissue distribution. J. Biol. Chem. 2004, 279, 30722–30730. [CrossRef]

11. Cavero, S.; Traba, J.; Del Arco, A.; Satrustegui, J. The calcium-dependent atp-mg/pi mitochondrial carrier is a
target of glucose-induced calcium signalling in saccharomyces cerevisiae. Biochem. J. 2005, 392, 537–544.
[CrossRef] [PubMed]

12. Monne, M.; Miniero, D.V.; Obata, T.; Daddabbo, L.; Palmieri, L.; Vozza, A.; Nicolardi, M.C.; Fernie, A.R.;
Palmieri, F. Functional characterization and organ distribution of three mitochondrial atp-mg/pi carriers in
arabidopsis thaliana. Biochim. Biophys. Acta 2015, 1847, 1220–1230. [CrossRef] [PubMed]

13. Monne, M.; Daddabbo, L.; Giannossa, L.C.; Nicolardi, M.C.; Palmieri, L.; Miniero, D.V.; Mangone, A.;
Palmieri, F. Mitochondrial atp-mg/phosphate carriers transport divalent inorganic cations in complex with
atp. J. Bioenerg. Biomembr. 2017, 49, 369–380. [CrossRef]

14. Iijima, M.; Jalil, A.; Begum, L.; Yasuda, T.; Yamaguchi, N.; Xian Li, M.; Kawada, N.; Endou, H.; Kobayashi, K.;
Saheki, T. Pathogenesis of adult-onset type ii citrullinemia caused by deficiency of citrin, a mitochondrial
solute carrier protein: Tissue and subcellular localization of citrin. Adv. Enzyme Regul. 2001, 41, 325–342.
[CrossRef]

http://www.mdpi.com/1422-0067/20/8/1888/s1
http://dx.doi.org/10.1016/j.mam.2012.05.005
http://dx.doi.org/10.1007/s10545-014-9708-5
http://dx.doi.org/10.1042/bse0470037
http://www.ncbi.nlm.nih.gov/pubmed/20533899
http://dx.doi.org/10.1016/j.bbamcr.2016.03.007
http://dx.doi.org/10.1093/emboj/20.18.5060
http://www.ncbi.nlm.nih.gov/pubmed/3680239
http://dx.doi.org/10.1007/s00424-003-1099-7
http://dx.doi.org/10.1074/jbc.M304988200
http://www.ncbi.nlm.nih.gov/pubmed/12851387
http://dx.doi.org/10.1038/ncomms6491
http://www.ncbi.nlm.nih.gov/pubmed/25410934
http://dx.doi.org/10.1074/jbc.M400445200
http://dx.doi.org/10.1042/BJ20050806
http://www.ncbi.nlm.nih.gov/pubmed/16111475
http://dx.doi.org/10.1016/j.bbabio.2015.06.015
http://www.ncbi.nlm.nih.gov/pubmed/26140942
http://dx.doi.org/10.1007/s10863-017-9721-0
http://dx.doi.org/10.1016/S0065-2571(00)00022-4


Int. J. Mol. Sci. 2019, 20, 1888 14 of 16

15. Del Arco, A.; Morcillo, J.; Martinez-Morales, J.R.; Galian, C.; Martos, V.; Bovolenta, P.; Satrustegui, J.
Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in
adult rat tissues. Eur. J. Biochem. 2002, 269, 3313–3320. [CrossRef]

16. Wibom, R.; Lasorsa, F.M.; Tohonen, V.; Barbaro, M.; Sterky, F.H.; Kucinski, T.; Naess, K.; Jonsson, M.;
Pierri, C.L.; Palmieri, F.; et al. Agc1 deficiency associated with global cerebral hypomyelination. N. Engl.
J. Med. 2009, 361, 489–495. [CrossRef] [PubMed]

17. Falk, M.J.; Li, D.; Gai, X.; McCormick, E.; Place, E.; Lasorsa, F.M.; Otieno, F.G.; Hou, C.; Kim, C.E.;
Abdel-Magid, N.; et al. Agc1 deficiency causes infantile epilepsy, abnormal myelination and reduced
n-acetylaspartate. JIMD Rep. 2014, 14, 77–85. [PubMed]

18. Saheki, T.; Kobayashi, K.; Iijima, M.; Horiuchi, M.; Begum, L.; Jalil, M.A.; Li, M.X.; Lu, Y.B.; Ushikai, M.;
Tabata, A.; et al. Adult-onset type ii citrullinemia and idiopathic neonatal hepatitis caused by citrin
deficiency: Involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea
cycle. Mol. Genet. Metab. 2004, 81 (Suppl. 1), S20–S26. [CrossRef] [PubMed]

19. Kobayashi, K.; Bang Lu, Y.; Xian Li, M.; Nishi, I.; Hsiao, K.J.; Choeh, K.; Yang, Y.; Hwu, W.L.; Reichardt, J.K.;
Palmieri, F.; et al. Screening of nine slc25a13 mutations: Their frequency in patients with citrin deficiency
and high carrier rates in asian populations. Mol. Genet. Metab. 2003, 80, 356–359. [CrossRef]

20. Fiermonte, G.; Soon, D.; Chaudhuri, A.; Paradies, E.; Lee, P.J.; Krywawych, S.; Palmieri, F.; Lachmann, R.H.
An adult with type 2 citrullinemia presenting in Europe. N. Engl. J. Med. 2008, 358, 1408–1409. [CrossRef]

21. Jalil, M.A.; Begum, L.; Contreras, L.; Pardo, B.; Iijima, M.; Li, M.X.; Ramos, M.; Marmol, P.; Horiuchi, M.;
Shimotsu, K.; et al. Reduced n-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type
mitochondrial aspartate-glutamate carrier. J. Biol. Chem. 2005, 280, 31333–31339. [CrossRef]

22. Infantino, V.; Dituri, F.; Convertini, P.; Santarsiero, A.; Palmieri, F.; Todisco, S.; Mancarella, S.; Giannelli, G.;
Iacobazzi, V. Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier
isoform 1 in hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 38–47. [CrossRef]
[PubMed]

23. Iacobazzi, V.; Infantino, V.; Costanzo, P.; Izzo, P.; Palmieri, F. Functional analysis of the promoter of the
mitochondrial phosphate carrier human gene: Identification of activator and repressor elements and their
transcription factors. Biochem. J. 2005, 391, 613–621. [CrossRef] [PubMed]

24. Convertini, P.; Infantino, V.; Bisaccia, F.; Palmieri, F.; Iacobazzi, V. Role of foxa and sp1 in mitochondrial
acylcarnitine carrier gene expression in different cell lines. Biochem. Biophys. Res. Commun. 2011, 404,
376–381. [CrossRef] [PubMed]

25. Infantino, V.; Iacobazzi, V.; Menga, A.; Avantaggiati, M.L.; Palmieri, F. A key role of the mitochondrial citrate
carrier (slc25a1) in tnfalpha- and ifngamma-triggered inflammation. Biochim. Biophys. Acta 2014, 1839,
1217–1225. [CrossRef] [PubMed]

26. Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V.
The mitochondrial citrate carrier: A new player in inflammation. Biochem. J. 2011, 438, 433–436. [CrossRef]

27. Convertini, P.; Menga, A.; Andria, G.; Scala, I.; Santarsiero, A.; Castiglione Morelli, M.A.; Iacobazzi, V.;
Infantino, V. The contribution of the citrate pathway to oxidative stress in down syndrome. Immunology 2016,
149, 423–431. [CrossRef] [PubMed]

28. Menga, A.; Palmieri, E.M.; Cianciulli, A.; Infantino, V.; Mazzone, M.; Scilimati, A.; Palmieri, F.; Castegna, A.;
Iacobazzi, V. Slc25a26 overexpression impairs cell function via mtdna hypermethylation and rewiring of
methyl metabolism. FEBS J. 2017, 284, 967–984. [CrossRef]

29. Fiore, C.; Trezeguet, V.; Le Saux, A.; Roux, P.; Schwimmer, C.; Dianoux, A.C.; Noel, F.; Lauquin, G.J.;
Brandolin, G.; Vignais, P.V. The mitochondrial adp/atp carrier: Structural, physiological and pathological
aspects. Biochimie 1998, 80, 137–150. [CrossRef]

30. Dolce, V.; Scarcia, P.; Iacopetta, D.; Palmieri, F. A fourth adp/atp carrier isoform in man: Identification,
bacterial expression, functional characterization and tissue distribution. FEBS Lett. 2005, 579, 633–637.
[CrossRef]

31. Villarroya, F.; Peyrou, M.; Giralt, M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie
2017, 134, 86–92. [CrossRef] [PubMed]

32. Menga, A.; Iacobazzi, V.; Infantino, V.; Avantaggiati, M.L.; Palmieri, F. The mitochondrial aspartate/glutamate
carrier isoform 1 gene expression is regulated by creb in neuronal cells. Int. J. Biochem. Cell Biol. 2015, 60,
157–166. [CrossRef]

http://dx.doi.org/10.1046/j.1432-1033.2002.03018.x
http://dx.doi.org/10.1056/NEJMoa0900591
http://www.ncbi.nlm.nih.gov/pubmed/19641205
http://www.ncbi.nlm.nih.gov/pubmed/24515575
http://dx.doi.org/10.1016/j.ymgme.2004.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15050970
http://dx.doi.org/10.1016/S1096-7192(03)00140-9
http://dx.doi.org/10.1056/NEJMc0707353
http://dx.doi.org/10.1074/jbc.M505286200
http://dx.doi.org/10.1016/j.bbadis.2018.10.018
http://www.ncbi.nlm.nih.gov/pubmed/30321589
http://dx.doi.org/10.1042/BJ20050776
http://www.ncbi.nlm.nih.gov/pubmed/15984930
http://dx.doi.org/10.1016/j.bbrc.2010.11.126
http://www.ncbi.nlm.nih.gov/pubmed/21130740
http://dx.doi.org/10.1016/j.bbagrm.2014.07.013
http://www.ncbi.nlm.nih.gov/pubmed/25072865
http://dx.doi.org/10.1042/BJ20111275
http://dx.doi.org/10.1111/imm.12659
http://www.ncbi.nlm.nih.gov/pubmed/27502741
http://dx.doi.org/10.1111/febs.14028
http://dx.doi.org/10.1016/S0300-9084(98)80020-5
http://dx.doi.org/10.1016/j.febslet.2004.12.034
http://dx.doi.org/10.1016/j.biochi.2016.09.017
http://www.ncbi.nlm.nih.gov/pubmed/27693079
http://dx.doi.org/10.1016/j.biocel.2015.01.004


Int. J. Mol. Sci. 2019, 20, 1888 15 of 16

33. Anantharaman, A.; Lin, I.J.; Barrow, J.; Liang, S.Y.; Masannat, J.; Strouboulis, J.; Huang, S.; Bungert, J. Role
of helix-loop-helix proteins during differentiation of erythroid cells. Mol. Cell. Biol. 2011, 31, 1332–1343.
[CrossRef]

34. Li, N.; Seetharam, B. A 69-base pair fragment derived from human transcobalamin ii promoter is sufficient
for high bidirectional activity in the absence of a tata box and an initiator element in transfected cells. Role of
an e box in transcriptional activity. J. Biol. Chem. 1998, 273, 28170–28177. [CrossRef] [PubMed]

35. Kaestner, K.H. The hepatocyte nuclear factor 3 (hnf3 or foxa) family in metabolism. Trends Endocrinol. Metab.
2000, 11, 281–285. [CrossRef]

36. Monaghan, A.P.; Kaestner, K.H.; Grau, E.; Schutz, G. Postimplantation expression patterns indicate a role
for the mouse forkhead/hnf-3 alpha, beta and gamma genes in determination of the definitive endoderm,
chordamesoderm and neuroectoderm. Development 1993, 119, 567–578. [PubMed]

37. Wang, J.; Zhu, C.P.; Hu, P.F.; Qian, H.; Ning, B.F.; Zhang, Q.; Chen, F.; Liu, J.; Shi, B.; Zhang, X.; et al.
Foxa2 suppresses the metastasis of hepatocellular carcinoma partially through matrix metalloproteinase-9
inhibition. Carcinogenesis 2014, 35, 2576–2583. [CrossRef]

38. Kadesch, T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ.
1993, 4, 49–55.

39. Roy, A.L.; Meisterernst, M.; Pognonec, P.; Roeder, R.G. Cooperative interaction of an initiator-binding
transcription initiation factor and the helix-loop-helix activator usf. Nature 1991, 354, 245–248. [CrossRef]

40. Corre, S.; Galibert, M.D. USF as a key regulatory element of gene expression. Med. Sci. 2006, 22, 62–67.
41. Van Deursen, D.; van Leeuwen, M.; Vaulont, S.; Jansen, H.; Verhoeven, A.J. Upstream stimulatory factors

1 and 2 activate the human hepatic lipase promoter via e-box dependent and independent mechanisms.
Biochim. Biophys. Acta 2009, 1791, 229–237. [CrossRef] [PubMed]

42. Bidder, M.; Shao, J.S.; Charlton-Kachigian, N.; Loewy, A.P.; Semenkovich, C.F.; Towler, D.A. Osteopontin
transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory
factor and activator protein-1 activities. J. Biol. Chem. 2002, 277, 44485–44496. [CrossRef] [PubMed]

43. Weigert, C.; Brodbeck, K.; Sawadogo, M.; Haring, H.U.; Schleicher, E.D. Upstream stimulatory factor (usf)
proteins induce human tgf-beta1 gene activation via the glucose-response element-1013/-1002 in mesangial
cells: Up-regulation of usf activity by the hexosamine biosynthetic pathway. J. Biol. Chem. 2004, 279,
15908–15915. [CrossRef] [PubMed]

44. Wang, S.; Skorczewski, J.; Feng, X.; Mei, L.; Murphy-Ullrich, J.E. Glucose up-regulates thrombospondin 1
gene transcription and transforming growth factor-beta activity through antagonism of cgmp-dependent
protein kinase repression via upstream stimulatory factor 2. J. Biol. Chem. 2004, 279, 34311–34322. [CrossRef]
[PubMed]

45. Shi, L.; Liu, S.; Nikolic, D.; Wang, S. High glucose levels upregulate upstream stimulatory factor 2 gene
transcription in mesangial cells. J. Cell. Biochem. 2008, 103, 1952–1961. [CrossRef] [PubMed]

46. Sawadogo, M. Multiple forms of the human gene-specific transcription factor usf. Ii. DNA binding properties
and transcriptional activity of the purified hela usf. J. Biol. Chem. 1988, 263, 11994–12001. [PubMed]

47. Ferre-D’Amare, A.R.; Pognonec, P.; Roeder, R.G.; Burley, S.K. Structure and function of the b/hlh/z domain of
usf. EMBO J. 1994, 13, 180–189. [CrossRef] [PubMed]

48. Friedman, J.R.; Kaestner, K.H. The foxa family of transcription factors in development and metabolism.
Cell. Mol. Life Sci. 2006, 63, 2317–2328. [CrossRef]

49. Kaestner, K.H.; Hiemisch, H.; Luckow, B.; Schutz, G. The hnf-3 gene family of transcription factors in mice:
Gene structure, cdna sequence and mrna distribution. Genomics 1994, 20, 377–385. [CrossRef]

50. Wolfrum, C.; Asilmaz, E.; Luca, E.; Friedman, J.M.; Stoffel, M. Foxa2 regulates lipid metabolism and
ketogenesis in the liver during fasting and in diabetes. Nature 2004, 432, 1027–1032. [CrossRef]

51. Wolfrum, C.; Shih, D.Q.; Kuwajima, S.; Norris, A.W.; Kahn, C.R.; Stoffel, M. Role of foxa-2 in adipocyte
metabolism and differentiation. J. Clin. Investig. 2003, 112, 345–356. [CrossRef] [PubMed]

52. Zhang, L.; Rubins, N.E.; Ahima, R.S.; Greenbaum, L.E.; Kaestner, K.H. Foxa2 integrates the transcriptional
response of the hepatocyte to fasting. Cell Metab. 2005, 2, 141–148. [CrossRef]

53. Le Lay, J.; Kaestner, K.H. The fox genes in the liver: From organogenesis to functional integration. Physiol. Rev.
2010, 90, 1–22. [CrossRef] [PubMed]

http://dx.doi.org/10.1128/MCB.01186-10
http://dx.doi.org/10.1074/jbc.273.43.28170
http://www.ncbi.nlm.nih.gov/pubmed/9774437
http://dx.doi.org/10.1016/S1043-2760(00)00271-X
http://www.ncbi.nlm.nih.gov/pubmed/8187630
http://dx.doi.org/10.1093/carcin/bgu180
http://dx.doi.org/10.1038/354245a0
http://dx.doi.org/10.1016/j.bbalip.2009.01.017
http://www.ncbi.nlm.nih.gov/pubmed/19416648
http://dx.doi.org/10.1074/jbc.M206235200
http://www.ncbi.nlm.nih.gov/pubmed/12200434
http://dx.doi.org/10.1074/jbc.M313524200
http://www.ncbi.nlm.nih.gov/pubmed/14757763
http://dx.doi.org/10.1074/jbc.M401629200
http://www.ncbi.nlm.nih.gov/pubmed/15184388
http://dx.doi.org/10.1002/jcb.21585
http://www.ncbi.nlm.nih.gov/pubmed/17955499
http://www.ncbi.nlm.nih.gov/pubmed/3403559
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06247.x
http://www.ncbi.nlm.nih.gov/pubmed/8306960
http://dx.doi.org/10.1007/s00018-006-6095-6
http://dx.doi.org/10.1006/geno.1994.1191
http://dx.doi.org/10.1038/nature03047
http://dx.doi.org/10.1172/JCI18698
http://www.ncbi.nlm.nih.gov/pubmed/12865419
http://dx.doi.org/10.1016/j.cmet.2005.07.002
http://dx.doi.org/10.1152/physrev.00018.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086072


Int. J. Mol. Sci. 2019, 20, 1888 16 of 16

54. Kim, J.Y.; Kim, H.J.; Kim, K.T.; Park, Y.Y.; Seong, H.A.; Park, K.C.; Lee, I.K.; Ha, H.; Shong, M.; Park, S.C.; et al.
Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/foxa transactivation
via inhibition of its DNA binding. Mol. Endocrinol. 2004, 18, 2880–2894. [CrossRef]

55. Yalley, A.; Schill, D.; Hatta, M.; Johnson, N.; Cirillo, L.A. Loss of interdependent binding by the foxo1 and
foxa1/a2 forkhead transcription factors culminates in perturbation of active chromatin marks and binding of
transcriptional regulators at insulin-sensitive genes. J. Biol. Chem. 2016, 291, 8848–8861. [CrossRef]

56. Bryzgalov, L.O.; Ershov, N.I.; Ilnitskaya, S.I. Foxa transcription factors determine the amplitude of
glucocorticoid induction of tyrosine aminotransferase in mice. Bull. Exp. Biol. Med. 2007, 144, 722–724.
[CrossRef] [PubMed]

57. Huizing, M.; Ruitenbeek, W.; van den Heuvel, L.P.; Dolce, V.; Iacobazzi, V.; Smeitink, J.A.; Palmieri, F.;
Trijbels, J.M. Human mitochondrial transmembrane metabolite carriers: Tissue distribution and its implication
for mitochondrial disorders. J. Bioenerg. Biomembr. 1998, 30, 277–284. [CrossRef]

58. Iacobazzi, V.; Convertini, P.; Infantino, V.; Scarcia, P.; Todisco, S.; Palmieri, F. Statins, fibrates and retinoic acid
upregulate mitochondrial acylcarnitine carrier gene expression. Biochem. Biophys. Res. Commun. 2009, 388,
643–647. [CrossRef]

59. Liu, M.; Lee, D.F.; Chen, C.T.; Yen, C.J.; Li, L.Y.; Lee, H.J.; Chang, C.J.; Chang, W.C.; Hsu, J.M.; Kuo, H.P.; et al.
Ikkalpha activation of notch links tumorigenesis via foxa2 suppression. Mol. Cell 2012, 45, 171–184. [CrossRef]

60. Vorvis, C.; Hatziapostolou, M.; Mahurkar-Joshi, S.; Koutsioumpa, M.; Williams, J.; Donahue, T.R.;
Poultsides, G.A.; Eibl, G.; Iliopoulos, D. Transcriptomic and crispr/cas9 technologies reveal foxa2 as a
tumor suppressor gene in pancreatic cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310,
G1124–G1137. [CrossRef]

61. Chen, X.; Cheung, S.T.; So, S.; Fan, S.T.; Barry, C.; Higgins, J.; Lai, K.M.; Ji, J.; Dudoit, S.; Ng, I.O.; et al. Gene
expression patterns in human liver cancers. Mol. Biol. Cell 2002, 13, 1929–1939. [CrossRef] [PubMed]

62. Mas, V.R.; Maluf, D.G.; Archer, K.J.; Yanek, K.; Kong, X.; Kulik, L.; Freise, C.E.; Olthoff, K.M.; Ghobrial, R.M.;
McIver, P.; et al. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced
hepatocellular carcinoma. Mol. Med. 2009, 15, 85–94. [CrossRef] [PubMed]

63. Roessler, S.; Jia, H.L.; Budhu, A.; Forgues, M.; Ye, Q.H.; Lee, J.S.; Thorgeirsson, S.S.; Sun, Z.; Tang, Z.Y.;
Qin, L.X.; et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage
hepatocellular carcinoma patients. Cancer Res. 2010, 70, 10202–10212. [CrossRef] [PubMed]

64. Hanse, E.A.; Ruan, C.; Kachman, M.; Wang, D.; Lowman, X.H.; Kelekar, A. Cytosolic malate dehydrogenase
activity helps support glycolysis in actively proliferating cells and cancer. Oncogene 2017, 36, 3915–3924.
[CrossRef] [PubMed]

65. Infantino, V.; Iacobazzi, V.; De Santis, F.; Mastrapasqua, M.; Palmieri, F. Transcription of the mitochondrial
citrate carrier gene: Role of srebp-1, upregulation by insulin and downregulation by pufa. Biochem. Biophys.
Res. Commun. 2007, 356, 249–254. [CrossRef] [PubMed]

66. Santarsiero, A.; Leccese, P.; Convertini, P.; Padula, A.; Abriola, P.; D’Angelo, S.; Bisaccia, F.; Infantino, V. New
insights into behcet’s syndrome metabolic reprogramming: Citrate pathway dysregulation. Mediators Inflamm.
2018, 2018, 1419352. [CrossRef]

67. Infantino, V.; Iacobazzi, V.; Palmieri, F.; Menga, A. Atp-citrate lyase is essential for macrophage inflammatory
response. Biochem. Biophys. Res. Commun. 2013, 440, 105–111. [CrossRef]

68. Convertini, P.; Tramutola, F.; Iacobazzi, V.; Lupattelli, P.; Chiummiento, L.; Infantino, V. Permethylated
anigopreissin a inhibits human hepatoma cell proliferation by mitochondria-induced apoptosis.
Chem. Biol. Interact. 2015, 237, 1–8. [CrossRef]

69. Iacobazzi, V.; Infantino, V.; Palmieri, F. Epigenetic mechanisms and sp1 regulate mitochondrial citrate carrier
gene expression. Biochem. Biophys. Res. Commun. 2008, 376, 15–20. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1210/me.2004-0211
http://dx.doi.org/10.1074/jbc.M115.677583
http://dx.doi.org/10.1007/s10517-007-0415-1
http://www.ncbi.nlm.nih.gov/pubmed/18683506
http://dx.doi.org/10.1023/A:1020501021222
http://dx.doi.org/10.1016/j.bbrc.2009.08.008
http://dx.doi.org/10.1016/j.molcel.2011.11.018
http://dx.doi.org/10.1152/ajpgi.00035.2016
http://dx.doi.org/10.1091/mbc.02-02-0023
http://www.ncbi.nlm.nih.gov/pubmed/12058060
http://dx.doi.org/10.2119/molmed.2008.00110
http://www.ncbi.nlm.nih.gov/pubmed/19098997
http://dx.doi.org/10.1158/0008-5472.CAN-10-2607
http://www.ncbi.nlm.nih.gov/pubmed/21159642
http://dx.doi.org/10.1038/onc.2017.36
http://www.ncbi.nlm.nih.gov/pubmed/28263970
http://dx.doi.org/10.1016/j.bbrc.2007.02.114
http://www.ncbi.nlm.nih.gov/pubmed/17350599
http://dx.doi.org/10.1155/2018/1419352
http://dx.doi.org/10.1016/j.bbrc.2013.09.037
http://dx.doi.org/10.1016/j.cbi.2015.05.005
http://dx.doi.org/10.1016/j.bbrc.2008.08.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	University of Kentucky
	UKnowledge
	4-16-2019

	Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (SLC25A13): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells
	Paolo Convertini
	Simona Todisco
	Francesco De Santis
	Ilaria Pappalardo
	Dominga Iacobazzi
	See next page for additional authors
	Repository Citation
	Authors
	Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (SLC25A13): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells
	Notes/Citation Information
	Digital Object Identifier (DOI)


	Introduction 
	Results 
	Screening of SLC25A13 Gene Promoter Activity 
	Identification and Functionality of the USF1 Cis-Element in SLC25A13 Gene Promoter 
	Identification and Functionality of the FOXA2 Cis-Element in SLC25A13 Gene Promoter 
	Exogenous FOXA2 Induces Transcription of SLC25A13 in SK-N-SH Cells 
	Synergy between FOXA2 and USF1 in Regulating SLC25A13 Gene Expression and AGC2 Function 

	Discussion 
	Materials and Methods 
	Construction of Plasmids. 
	Cell Culture, RNA Interference and Transient Transfection. 
	Reverse Transcriptase-PCR and Real-Time PCR 
	Western Blotting 
	Chromatin Immunoprecipitation 
	Intracellular NAD+/NADH Quantification 
	Statistical Analysis 

	References

