28,490 research outputs found
Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector
In this paper, we estimate how quickly and how precisely a reactor's
operational status and thermal power can be monitored over hour to month time
scales, using the antineutrino rate as measured by a cubic meter scale
detector. Our results are obtained from a detector we have deployed and
operated at 25 meter standoff from a reactor core. This prototype can detect a
prompt reactor shutdown within five hours, and monitor relative thermal power
to three percent within seven days. Monitoring of short-term power changes in
this way may be useful in the context of International Atomic Energy Agency's
(IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.Comment: 10 pages, 9 figure
Oceanic stochastic parametrizations in a seasonal forecast system
We study the impact of three stochastic parametrizations in the ocean
component of a coupled model, on forecast reliability over seasonal timescales.
The relative impacts of these schemes upon the ocean mean state and ensemble
spread are analyzed. The oceanic variability induced by the atmospheric forcing
of the coupled system is, in most regions, the major source of ensemble spread.
The largest impact on spread and bias came from the Stochastically Perturbed
Parametrization Tendency (SPPT) scheme - which has proven particularly
effective in the atmosphere. The key regions affected are eddy-active regions,
namely the western boundary currents and the Southern Ocean. However, unlike
its impact in the atmosphere, SPPT in the ocean did not result in a significant
decrease in forecast error. Whilst there are good grounds for implementing
stochastic schemes in ocean models, our results suggest that they will have to
be more sophisticated. Some suggestions for next-generation stochastic schemes
are made.Comment: 24 pages, 3 figure
Effect of Varying Dietary Selenium Levels on Tissue Composition, Blood Composition and Performance of Growing Swine Fed Seleniferous Grains
It is established that selenium is an essential micronutrient as well as a natural toxicant for domestic livestock. However, reports of selenium toxicosis in swine are limited and not well documented. The level at which selenium becomes toxic to swine is thought to be about 8 ppm. This value was derived from the initial selenium research of the 1930\u27s, with considerable extrapolation from other species used in this determination. Since that time, diet composition has become much more complex, nutrient level of diets has increased and feed additives are commonly used. It is not known what effect these factors or other nutritional interrelationships may have on the level at which selenium becomes toxic. Due to the variability of selenium content in feedstuffs and because selenium is now approved as a feed additive, it is important to better define the level at which selenium becomes toxic to swine. This research was conducted to determine the effect of varying dietary selenium levels on tissue and blood composition and performance of growing swine fed seleniferous grains
Screening High-z GRBs with BAT Prompt Emission Properties
Detecting high-z GRBs is important for constraining the GRB formation rate,
and tracing the history of re-ionization and metallicity of the universe. Based
on the current sample of GRBs detected by Swift with known redshifts, we
investigated the relationship between red-shift, and spectral and temporal
characteristics, using the BAT event-by-event data. We found red-shift trends
for the peak-flux-normalized temporal width T90, the light curve variance, the
peak flux, and the photon index in simple power-law fit to the BAT event data.
We have constructed criteria for screening GRBs with high red-shifts. This will
enable us to provide a much faster alert to the GRB community of possible
high-z bursts.Comment: 4 pages, 4 figures, to be published in the proceedings of ''Gamma Ray
Bursts 2007'', Santa Fe, New Mexico, November 5-
- …