1,355 research outputs found

    Procedural error monitoring and smart checklists

    Get PDF
    Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form

    A function-based approach to cockpit procedure aids

    Get PDF
    The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form

    Improving Departure Throughput by Dynamically Adjusting Inter-Arrival Spacing

    Get PDF
    LaGuardia Airport (LGA) in New York has many unique challenges that create excess taxi-out delays. The purpose of this paper is to investigate the potential benefit that could be gained by tactically adjusting the Terminal Sequencing and Spacing (TSS) schedule to precisely manage inter-arrival spacing to maximize the number of departures per arrival pair. Three strategies for dynamically adjusting arrival schedules are proposed in this paper: Delay Control, Delay and Advance, and No Slack Capacity. The benefits of these strategies were examined on actual traffic data at LGA. The results showed that by applying these strategies, a 10 to 60 increase in departures and a reduction in un-utilized departure capacity (gaps) could be achieved during the airports busiest six-hour period. Significant increases in departure throughput would improve air traffic operations by reducing departure delay time. Furthermore, the concept could be used to resolve temporal mismatches between departure capacity and demand which also cause excessive departure delays

    The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    Get PDF
    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews

    Altitude deviations: Breakdowns of an error-tolerant system

    Get PDF
    Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given

    Aiding Vertical Guidance Understanding

    Get PDF
    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance

    Human Centered Decision Support Tools for Arrival Merging and Spacing

    Get PDF
    A simulation of terminal area merging and spacing with air traffic controllers and commercial flight crews was conducted. The goal of the study was to assess the feasibility and benefits of ground and flight-deck based tools to support arrival merging and spacing operations. During the simulation, flight crews arrived over the northwest and southwest arrival meter fixes and were cleared for the flight management system arrivals to runways 18 and 13 right. The controller could then clear the aircraft to merge behind and space with an aircraft on a converging stream or to space behind an aircraft on the same stream of traffic. The controller remained responsible for aircraft separation. Empirical research was performed to assess air and ground tools and the effects of mixed equipage. During the all tools conditions, 75% of the arrivals were equipped for merging and spacing. All aircraft were ADS-B equipped and flew charted FMS routes which were coordinated based on wake turbulence separation at the arrival runway. The aircraft spacing data indicate that spacing and merging were improved with either air or ground based merging and spacing tools, but performance was best with airborne tools. Both controllers and pilots exhibited low to moderate workload and both reported benefits from the concept

    Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    Get PDF
    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure

    Quantifying the domestic building fabric 'performance gap'

    Get PDF
    In the UK, there is mounting evidence that the measured in situ performance of the building fabric in new build dwellings can be greater than that predicted, resulting in a significant building fabric ‘performance gap’. This paper presents the coheating test results from 25 new build dwellings built to Part L1A 2006 or better. Whilst the total number of dwellings reported here is small, the results suggest that a substantial ‘performance gap’ can exist between the predicted and measured performance of the building fabric, with the measured whole building U-value being just over 1.6 times greater than that predicted. This is likely to have significant implications in terms of the energy use and CO2 emissions attributable to these dwellings in-use

    The Effectiveness of a Route Crossing Tool in a Simulated New York Airspace

    Get PDF
    Congested airspace is the cause of many delays in the terminal area and these delays can have a ripple effect on the rest of a nation's airspace. The New York terminal area is an example of where this happens in the U. S. An important goal, therefore, is to increase the efficiency of operations in congested terminal airspace where possible. Modeling studies of arrival and departure flows have shown that sharing of arrival and departure airspace increases efficiency in terminal operations. One source of inefficiency in terminal operations is that departure aircraft are frequently held level under arrival flows when it would be more efficient to climb the departure aircraft earlier. A Route Crossing Tool was developed to help controllers climb Newark (EWR) departures to the south earlier by temporarily sharing airspace with arrivals coming into LaGuardia (LGA) from the south. Instead of flying under the arrivals, a departure to the south could climb earlier by flying through the arrival airspace if there was a suitable gap between arrivals. A Human-in-the-Loop (HITL) simulation was conducted in this environment which compared three tool conditions: Baseline (no tool), a Single Route Crossing tool in which one route through the arrival flow was evaluated for crossing, and a Multi-Route Crossing tool in which five parallel routes were evaluated. In all conditions, the departures could be held level under the arrival flow. The results showed that controllers climbed a higher proportion of departures in the Multi-Route tool condition than in the other two conditions, with a higher proportion of departures climbed in smaller gaps and in front of trailing arrivals. The controllers indicated that the Multi-Route and Single Route tools helped them estimate distances more accurately and rated safety, workload, and coordination in the simulation as acceptable
    • …
    corecore