2,971 research outputs found

    Identification of sources of lead in children in a primary zinc-lead smelter environment.

    Get PDF
    We compared high-precision lead isotopic ratios in deciduous teeth and environmental samples to evaluate sources of lead in 10 children from six houses in a primary zinc-lead smelter community at North Lake Macquarie, New South Wales, Australia. Teeth were sectioned to allow identification of lead exposure in utero and in early childhood. Blood lead levels in the children ranged from 10 to 42 micro g/dL and remained elevated for a number of years. For most children, only a small contribution to tooth lead can be attributed to gasoline and paint sources. In one child with a blood lead concentration of 19.7 microg/dL, paint could account for about 45% of lead in her blood. Comparison of isotopic ratios of tooth lead levels with those from vacuum cleaner dust, dust-fall accumulation, surface wipes, ceiling (attic) dust, and an estimation of the smelter emissions indicates that from approximately 55 to 100% of lead could be derived from the smelter. For a blood sample from another child, > 90% of lead could be derived from the smelter. We found varying amounts of in utero-derived lead in the teeth. Despite the contaminated environment and high blood lead concentrations in the children, the levels of lead in the teeth are surprisingly low compared with those measured in children from other lead mining and smelting communities

    Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans

    Get PDF
    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. 19F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography–mass spectrometry (GC–MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4′ position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism

    River Flows and Water Wars: Emerging Science for Environmental Decision Making

    Get PDF
    Real and apparent conflicts between ecosystem and human needs for fresh water are contributing to the emergence of an alternative model for conducting river science around the world. The core of this new paradigm emphasizes the need to forge new partnerships between scientists and other stakeholders where shared ecological goals and river visions are developed, and the need for new experimental approaches to advance scientific understanding at the scales relevant to whole-river management. We identify four key elements required to make this model succeed: existing and planned water projects represent opportunities to conduct ecosystem-scale experiments through controlled river flow manipulations; more cooperative interactions among scientists, managers, and other stakeholders are critical; experimental results must be synthesized across studies to allow broader generalization; and new, innovative funding partnerships are needed to engage scientists and to broadly involve the government, the private sector, and NGOs

    Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

    Get PDF
    HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semi-major axis of 35{60 AU, an eccentricity ? 0.5 and an inclination of 75{85?. The stellar companion has likely strongly in uenced the orbit of the exoplanet and quite possibly explains its high eccentricity.Comment: Accepted to the Astronomical Journal, 6 Pages, 5 Figure

    Identification of PADI2 as a potential breast cancer biomarker and therapeutic target.

    Get PDF
    BACKGROUND: We have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects. METHODS: RNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated. To examine PADI2 expression levels during breast cancer progression, the cell lines from the MCF10AT model were used. The efficacy of the PADI inhibitor, Cl-amidine, was tested in vitro using MCF10DCIS cells grown in 2D-monolayers and 3D-spheroids, and in vivo using MCF10DCIS tumor xenografts. Treated MCF10DCIS cells were examined by flow-cytometry to determine the extent of apoptosis and by RT2 Profiler PCR Cell Cycle Array to detect alterations in cell cycle associated genes. RESULTS: We show by RNA-seq that PADI2 mRNA expression is highly correlated with HER2/ERBB2 (p = 2.2 x 106) in luminal breast cancer cell lines. Using the MCF10AT model of breast cancer progression, we then demonstrate that PADI2 expression increases during the transition of normal mammary epithelium to fully malignant breast carcinomas, with a strong peak of PADI2 expression and activity being observed in the MCF10DCIS cell line, which models human comedo-DCIS lesions. Next, we show that a PADI inhibitor, Cl-amidine, strongly suppresses the growth of MCF10DCIS monolayers and tumor spheroids in culture. We then carried out preclinical studies in nude (nu/nu) mice and found that Cl-amidine also suppressed the growth of xenografted MCF10DCIS tumors by more than 3-fold. Lastly, we performed cell cycle array analysis of Cl-amidine treated and control MCF10DCIS cells, and found that the PADI inhibitor strongly affects the expression of several cell cycle genes implicated in tumor progression, including p21, GADD45alpha, and Ki67. CONCLUSION: Together, these results suggest that PADI2 may function as an important new biomarker for HER2/ERBB2+ tumors and that Cl-amidine represents a new candidate for breast cancer therapy

    Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease

    Get PDF
    The cause of Crohn's disease (CD) remains poorly understood. Counterintuitively, these patients possess an impaired acute inflammatory response, which could result in delayed clearance of bacteria penetrating the lining of the bowel and predispose to granuloma formation and chronicity. We tested this hypothesis in human subjects by monitoring responses to killed Escherichia coli injected subcutaneously into the forearm. Accumulation of 111In-labeled neutrophils at these sites and clearance of 32P-labeled bacteria from them were markedly impaired in CD. Locally increased blood flow and bacterial clearance were dependent on the numbers of bacteria injected. Secretion of proinflammatory cytokines by CD macrophages was grossly impaired in response to E. coli or specific Toll-like receptor agonists. Despite normal levels and stability of cytokine messenger RNA, intracellular levels of tumor necrosis factor (TNF) were abnormally low in CD macrophages. Coupled with reduced secretion, these findings indicate accelerated intracellular breakdown. Differential transcription profiles identified disease-specific genes, notably including those encoding proteins involved in vesicle trafficking. Intracellular destruction of TNF was decreased by inhibitors of lysosomal function. Together, our findings suggest that in CD macrophages, an abnormal proportion of cytokines are routed to lysosomes and degraded rather than being released through the normal secretory pathway
    corecore