345 research outputs found

    Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair

    Get PDF
    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer

    Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep

    Get PDF
    Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28Β days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought

    Mutations in the Schmallenberg virus Gc glycoprotein facilitate cellular protein synthesis shutoff and restore pathogenicity of NSs deletion mutants in mice

    Get PDF
    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach higher titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro. Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild type SBV as has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an IFN antagonist. Therefore SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by the infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins while the ability to control the production of IFN maps to the NSs protein. Importance The identification of viral determinants of pathogenesis is key to the development of prophylactic and interventions measures. In this study we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc glycoprotein can restore pathogenicity of attenuated mutants resulting from deletions or mutations in the non-structural protein NSs. Our findings highlight the fact that careful consideration should be taken when designing live attenuated vaccines based on deletions of non-structural proteins since single mutations in the viral glycoproteins appear to revert attenuated mutants to virulent phenotypes

    Connectionist perspectives on language learning, representation and processing.

    Get PDF
    The field of formal linguistics was founded on the premise that language is mentally represented as a deterministic symbolic grammar. While this approach has captured many important characteristics of the world\u27s languages, it has also led to a tendency to focus theoretical questions on the correct formalization of grammatical rules while also de-emphasizing the role of learning and statistics in language development and processing. In this review we present a different approach to language research that has emerged from the parallel distributed processing or \u27connectionist\u27 enterprise. In the connectionist framework, mental operations are studied by simulating learning and processing within networks of artificial neurons. With that in mind, we discuss recent progress in connectionist models of auditory word recognition, reading, morphology, and syntactic processing. We argue that connectionist models can capture many important characteristics of how language is learned, represented, and processed, as well as providing new insights about the source of these behavioral patterns. Just as importantly, the networks naturally capture irregular (non-rule-like) patterns that are common within languages, something that has been difficult to reconcile with rule-based accounts of language without positing separate mechanisms for rules and exceptions

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and β€œsynthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΞ”NSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΞ”NSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    Identification and characterization of a novel non-structural protein of bluetongue virus

    Get PDF
    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
    • …
    corecore