14,590 research outputs found
Extraction of Singlet States from Noninteracting High-Dimensional Spins
We present a scheme for the extraction of singlet states of two remote
particles of arbitrary quantum spin number. The goal is achieved through
post-selection of the state of interaction mediators sent in succession. A
small number of iterations is sufficient to make the scheme effective. We
propose two suitable experimental setups where the protocol can be implemented.Comment: 4 pages, 2 figure
Entanglement detection in hybrid optomechanical systems
We study a device formed by a Bose Einstein condensate (BEC) coupled to the
field of a cavity with a moving end-mirror and find a working point such that
the mirror-light entanglement is reproduced by the BEC-light quantum
correlations. This provides an experimentally viable tool for inferring
mirror-light entanglement with only a limited set of assumptions. We prove the
existence of tripartite entanglement in the hybrid device, persisting up to
temperatures of a few milli-Kelvin, and discuss a scheme to detect it.Comment: 6 pages, 7 figures, published versio
Resonance enhancement of particle production during reheating
We found a consistent equation of reheating after inflation, which shows that
for small quantum fluctuations the frequencies of resonance are slighted
different from the standard ones. Quantum interference is taken into account
and we found that at large fluctuations the process mimics very well the usual
parametric resonance but proceed in a different dynamical way. The analysis is
made in a toy quantum mechanical model and we discuss further its extension to
quantum field theory.Comment: 4 pages, 4 figures(eps), using RevTe
Phase Transitions in Generalised Spin-Boson (Dicke) Models
We consider a class of generalised single mode Dicke Hamiltonians with
arbitrary boson coupling in the pseudo-spin - plane. We find exact
solutions in the thermodynamic, large-spin limit as a function of the coupling
angle, which allows us to continuously move between the simple dephasing and
the original Dicke Hamiltonians. Only in the latter case (orthogonal static and
fluctuating couplings), does the parity-symmetry induced quantum phase
transition occur.Comment: 6 pages, 5 figue
Quantum Error Correction in Spatially Correlated Quantum Noise
We consider quantum error correction of quantum-noise that is created by a
local interaction of qubits with a common bosonic bath. The possible exchange
of bath bosons between qubits gives rise to spatial and temporal correlations
in the noise. We find that these kind of noise correlations have a strong
negative impact on quantum error correction.Comment: 4 pages, 1 figure, final version with minor correction
Recommended from our members
Complete response of skull base inverted papilloma to chemotherapy: Case report.
BackgroundInverted papilloma (IP) is the most common benign sinonasal neoplasm. Endoscopic techniques, improved understanding of pathophysiology, and novel surgical approaches have allowed rhinologists to treat IPs more effectively, with surgery being the mainstay of therapy. Frontal sinus IP poses a challenge for surgical therapy due to complex anatomy and potentially difficult surgical access.ObjectivesWe reported a unique case of a massive frontal sinus IP that presented with intracranial and orbital extension, with near resolution after chemotherapy.MethodsA retrospective case review of a patient with a frontal sinus IP treated at a tertiary academic medical center.ResultsA 75-year-old male patient presented with nasal obstruction, purulent nasal discharge, and a growing left supraorbital mass. Endoscopy demonstrated a mass that filled both frontal and ethmoid sinuses, with orbital invasion. There also was substantial erosion of the posterior table, which measured 1.73 × 1.40 cm. A biopsy specimen demonstrated IP with carcinoma in situ. The patient was deemed unresectable on initial evaluation and, subsequently, underwent chemotherapy (carboplatin and paclitaxel). The tumor had a dramatic response to chemotherapy, and the patient elected for definitive surgery to remove any residual disease. During surgery, only a small focus of IP was found along the superior wall of the frontal sinus. No tumor was found elsewhere, including at the site of skull base erosion. The final pathology was IP without carcinoma in situ or dysplasia.ConclusionThis was the first reported case of chemotherapeutic "debulking" of IP, which facilitated surgical resection, despite substantial intracranial and orbital involvement. Although nearly all IPs can be treated surgically, rare cases, such as unresectable tumors, may benefit from systemic chemotherapy
Physical model for the generation of ideal resources in multipartite quantum networking
We propose a physical model for generating multipartite entangled states of
spin- particles that have important applications in distributed quantum
information processing. Our protocol is based on a process where mobile spins
induce the interaction among remote scattering centers. As such, a major
advantage lies on the management of stationary and well separated spins. Among
the generable states, there is a class of -qubit singlets allowing for
optimal quantum telecloning in a scalable and controllable way. We also show
how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.Comment: 5 pages, 2 figures. Format revise
An Innovative and Easy Method for Iron-Doped Titania Synthesis
In this work, photocatalytically active titanium oxide nanoparticles were synthesized for the treatment of contaminated water under visible light. Various Ag, Sr and Fe-based synthesis and doping techniques (mainly hydrothermal and sol-gel methods) were performed. Adsorptive and photocatalytic properties were studied by testing in batch mode for the decontaminating a synthetic methylene blue solution (used as a model contaminant) using a simple 13 W LED bulb as the light source. The best material in terms of both activity (high removal kinetics) and simplicity of synthesis was found to be titanium oxide doped with Fe via "solid-state"method. This method enabled the synthesis of titania nanoparticles about 70 nanometers in size with Fe3+ effectively substituting titanium atoms (Ti4+) in the crystalline bulk of titania. The pseudo-first-order kinetic model was found to represent the behavior of the experimental data
Photon production from the vacuum close to the super-radiant transition: When Casimir meets Kibble-Zurek
The dynamical Casimir effect (DCE) predicts the generation of photons from
the vacuum due to the parametric amplification of the quantum fluctuation of an
electromagnetic field\cite{casimir1,casimir2}. The verification of such effect
is still elusive in optical systems due to the very demanding requirements of
its experimental implementation. This typically requires very fast changes of
the boundary conditions of the problem, such as the high-frequency driving of
the positions of the mirrors of a cavity accommodating the field. Here, we show
that an ensemble of two-level atoms collectively coupled to the electromagnetic
field of a cavity (thus embodying the quantum Dicke model\cite{dicke}), driven
at low frequencies and close to a quantum phase transition, stimulates the
production of photons from the vacuum. This paves the way to an effective
simulation of the DCE through a mechanism that has recently found an
outstanding experimental demonstration\cite{esslinger}. The spectral properties
of the emitted radiation reflect the critical nature of the system and allow us
to link the detection of DCE to the Kibble-Zurek mechanism for the production
of defects when crossing a continuous phase transition\cite{KZ1,KZ2}. We
illustrate the features of our proposal by addressing a simple cavity
quantum-electrodynamics (cQED) setting of immediate experimental realisation.Comment: 4+1 pages, major changes in the second part of the paper. To appear
in Physical Review Letter
Entanglement Controlled Single-Electron Transmittivity
We consider a system consisting of single electrons moving along a 1D wire in
the presence of two magnetic impurities. Such system shows strong analogies
with a Fabry - Perot interferometer in which the impurities play the role of
two mirrors with a quantum degree of freedom: the spin. We have analysed the
electron transmittivity of the wire in the presence of entanglement between the
impurity spins. The main result of our analysis is that, for suitable values of
the electron momentum, there are two maximally entangled state of the impurity
spins the first of which makes the wire transparent whatever the electron spin
state while the other strongly inhibits the electron transmittivity. Such
predicted striking effect is experimentally observable with present day
technology.Comment: Published version (6 figures
- …