2,498 research outputs found
Genesis of Atlantic Lows Experiment NASA Electra Boundary Layer Flights Data Report
The objective of this research was to obtain high resolution measurements of the height of the Marine Atmospheric Boundary Layer (MABL) during cold air outbreaks using an Airborne Lidar System. The research was coordinated with other investigators participating in the Genesis of Atlantic Lows Experiment (GALE). An objective computerized scheme was developed to obtain the Boundary Layer Height from the Lidar Data. The algorithm was used on each of the four flight days producing a high resolution data set of the MABL height over the GALE experiment area. Plots of the retrieved MABL height as well as tabular data summaries are presented
High-magnetic field lattice length changes in URu2Si2
We report high magnetic field (up to 45 T) c-axis thermal expansion and
magnetostriction experiments on URu2Si2 single crystals. The sample length
change associated with the transition to the hidden order phase becomes
increasingly discontinous as the magnetic field is raised above 25 T. The
re-entrant ordered phase III is clearly observed in both the thermal expansion
and magnetostriction above 36 T, in good agreement with previous results. The
sample length is also discontinuous at the boundaries of this phase, mainly at
the upper boundary. A change in the sign of the coefficient of
thermal-expansion is observed at the metamagnetic transition (B_M = 38 T) which
is likely related to the existence of a quantum critical end point.Comment: 5 pages, 4 figures, to be published in PR
Multiple regions of quantum criticality in YbAgGe
Dilation and thermopower measurements on YbAgGe, a heavy-fermion
antiferromagnet, clarify and refine the magnetic field-temperature (H-T) phase
diagram and reveal a field-induced phase with T-linear resistivity. On the
low-H side of this phase we find evidence for a first-order transition and
suggest that YbAgGe at 4.5 T may be close to a quantum critical end point. On
the high-H side our results are consistent with a second-order transition
suppressed to a quantum critical point near 7.2 T. We discuss these results in
light of global phase diagrams proposed for Kondo lattice systems
Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling
Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming
The Fermi surface of CeCoIn5: dHvA
Measurements of the de Haas - van Alphen effect in the normal state of the
heavy Fermion superconductor CeCoIn5 have been carried out using a torque
cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18
tesla. Angular dependent measurements of the extremal Fermi surface areas
reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or
CeIrIn5. The effective masses of the measured frequencies range from 9 to 20
m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid
Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state
We report high magnetic field linear magnetostriction experiments on
CeCoIn single crystals. Two features are remarkable: (i) a sharp
discontinuity in all the crystallographic axes associated with the upper
superconducting critical field that becomes less pronounced as the
temperature increases; (ii) a distinctive second order-like feature observed
only along the c-axis in the high field (10 T ) low
temperature ( 0.35 K) region. This second order transition is
observed only when the magnetic field lies within 20 of the ab-planes and
there is no signature of it above , which raises questions regarding
its interpretation as a field induced magnetically ordered phase. Good
agreement with previous results suggests that this anomaly is related to the
transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page
- …