8 research outputs found

    The unexpected awakening of Chaitén volcano, Chile

    No full text
    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile’s southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low- altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally.Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.The Chaitén eruption discharged rhyolite magma, a high-silica composition associated with extremes of eruptive behavior ranging from gentle lava effusion to violent, gas-driven explosions. As the first major rhyolitic eruption since that of Alaska’s Katmai-Novarupta in 1912, it permits observations that are benchmarks for future such events. It also reignites the debate on what processes rekindle long-dormant volcanoes, justifies efforts to mitigate rare but significant hazards through ground-based monitoring, and confi rms the value of timely satellite observations

    Use of Remote Imagery to Analyse Changes in Morphology and Longitudinal Large Wood Distribution in the Blanco River After the 2008 Chaiten Volcanic Eruption, Southern Chile

    No full text
    The 2008 Chaitén volcanic eruption generated significant changes in the channel morphology and large wood (LW) abundance along the fluvial corridor of the Blanco River, southern Chile. Comparisons of remote sensing images from the pre-eruption (year 2005) and post-eruption (years 2009 and 2012) conditions showed that in a 10.2km long study segment the Blanco River widened 3.5 times from 2005 to 2009, and that the maximum enlargement was nine times the original width. Changes in channel width were lower between the years 2012 and 2009. The sinuosity and braiding indexes also changed between 2005 and 2009. After the eruption the channel sinuosity was higher and specific river reaches developed a braided pattern, but by 2012 the channel was recovering pre-eruption characteristics. Huge quantities of LW were introduced to the study segment; individual LW per km of channel length were 1.6 and 74.3 in 2005 and 2009, respectively, and more than 30 log jams km-1 were observed in the year 2009. Between 2009 and 2012 the quantity of LW was very similar. Statistically significant relationships were found between the number of log jams and channel sinuosity and between the number of pieces of large wood with sinuosity and channel width. Wood was highly dynamic between 2009 and 2012: 78% of individual pieces and 48% of log jams identified in the 2009 image had moved by 2012. Finally the supervised classification of imagery associated with ArcMap tools was tested to identify large woo

    History of the Pacific Superplume: Implications for Pacific Paleogeography Since the Late Proterozoic

    No full text
    corecore