157 research outputs found

    Scalable analytics over unstructured multidimensional time-series data

    Get PDF
    Presented at the National data integrity conference: enabling research: new challenges & opportunities held on May 7-8, 2015 at Colorado State University, Fort Collins, Colorado. Researchers, administrators and integrity officers are encountering new challenges regarding research data and integrity. This conference aims to provide attendees with both a high level understanding of these challenges and impart practical tools and skills to deal with them. Topics will include data reproducibility, validity, privacy, security, visualization, reuse, access, preservation, rights and management.PowerPoint presentation given on May 7, 2015

    Dynamic Scaling for Service Oriented Applications: Implications of Virtual Machine Placement on IaaS Clouds

    Get PDF
    Abstraction of physical hardware using infrastructure-as-a-service (IaaS) clouds leads to the simplistic view that resources are homogeneous and that infinite scaling is possible with linear increases in performance. Support for autonomic scaling of multi-tier service oriented applications requires determination of when, what, and where to scale. \u27When\u27 is addressed by hotspot detection schemes using techniques including performance modeling and time series analysis. \u27What\u27 relates to determining the quantity and size of new resources to provision. \u27Where\u27 involves identification of the best location(s) to provision new resources. In this paper we investigate primarily \u27where\u27 new infrastructure should be provisioned, and secondly \u27what\u27 the infrastructure should be. Dynamic scaling of infrastructure for service oriented applications requires rapid response to changes in demand to meet application quality-of-service requirements. We investigate the performance and resource cost implications of VM placement when dynamically scaling server infrastructure of service oriented applications . We evaluate dynamic scaling in the context of providing modeling-as-a-service for two environmental science models

    SWARM: Scheduling Large-Scale Jobs over the Loosely-Coupled HPC Clusters

    Full text link
    Abstract — Compute-intensive scientific applications are heavily reliant on the available quantity of computing resources. The Grid paradigm provides a large scale computing environment for scientific users. However, conventional Grid job submission tools do not provide a high-level job scheduling environment for these users across multiple institutions. For extremely large number of jobs, a more scalable job scheduling framework that can leverage highly distributed clusters and supercomputers is required. In this paper, we propose a high-level job scheduling Web service framework, Swarm. Swarm is developed for scientific applications that must submit massive number of high-throughput jobs or workflows to highly distributed computing clusters. The Swarm service itself is designed to b

    Towards dependable grid and web services

    Full text link

    Migration of Multi-Tier Applications to Infrastructure-As-A-Service Clouds: An Investigation Using Kernel-Based Virtual Machines

    Get PDF
    To investigate challenges of multi -tier application migration to Infrastructure -as-a- Service (IaaS) clouds we performed an experimental investigation by deploying a processor bound and input -output bound variant of the RUSLE2 erosion model to an IaaS base d private cloud. Scaling the applications to achieve optimal system throughput is complex and involves much more than simply increasing the number of allotted virtual machines (VMs). While scaling the application variants a series of bottlenecks were encountered unique to an application\u27s processing, I/O, and memory requirements, herein referred to as an application\u27s profile. To investigate the impact of provisioning variation for hosting multi -tier applications we tested four schemes of VM deployments across the physical nodes of our cloud. Performance degradation was more pronounced when multiple I/O or CPU resource intensive application components were co -located on the same physical hardware. We investigated the virtualization overhead incurred using Kernel -based virtual machines (KVM) by deploying our application variants to both physical and virtual machines. Overhead varied based on the unique characteristics of each application\u27s profile. We observed ~112% overhead for the input/output bound application and just ~ 10 % overhead for the processor bound application. Understanding an application\u27s profile was found to be important for optimal IaaS -based cloud migration and scaling

    Service Isolation vs. Consolidation: Implications for Iaas Cloud Application Deployment

    Get PDF
    Service isolation, achieved by deploying components of multi -tier applications using separate virtual machines (VMs), is a common \u27best\u27 practice. Various advantages cited include simpler deployment architectures, easier resource scalability for supporting dynamic application throughput requirements, and support for component-level fault tolerance . This paper presents results from an empirical study which investigates the performance implications of component placement for deployments of multi -tier applications to Infrastructure-as-a- Service (IaaS) clouds. Relationship s between performance and resource utilization (CPU, disk, network) are investigated to better understand the implications which result from how applications are deployed. All possible deployments for two variants of a multi -tier application were tested, one computationally bound by the model, the other bound by a geospatial database. The best performing deployments required as few as 2 VMs, half the number required for service isolation, demonstrating potential cost savings with service consolidation. Resource use (CPU time, disk I/O, and network I/O) varied based on component placement and VM memory allocation. Using separate VMs to host each application component resulted in performance overhead of ~1 -2%. Relationships between resource utilization an d performance were harnessed to build a multiple linear regression model to predict performance of component deployments. CPU time, disk sector reads, and disk sector writes are identified as the most powerful performance predictors for component deployments

    Performance Modeling to Support Multi-Tier Application Deployment to Infrastructure-As-A-Service Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds support migration of multi-tier applications through virtualization of diverse application stack(s) of components which may require various operating systems and environments. To maximize performance of applications deployed to IaaS clouds while minimizing deployment costs, it is necessary to create virtual machine images to host application components with consideration for component dependencies that may affect load balancing of physical resources of VM hosts including CPU time, disk and network bandwidth. This paper presents results of an investigation utilizing physical machine (PM) and virtual machine (VM) resource utilization statistics to build performance models to predict application performance and rank performance of application component deployment configurations deployed across VMs. Our objective was to predict which component compositions provide best performance while requiring the fewest number of VMs. Eighteen individual resource utilization statistics were investigated for use as independent variables to predict service execution time using four different modeling approaches. Overall CPU time was the strongest predictor of execution time. The strength of individual predictors varied with respect to the resource utilization profiles of the applications. CPU statistics including idle time and number of context switches were good predictors when the test application was more disk I/O bound, while disk I/O statistics were better predictors when the application was more CPU bound. All performance models built were effective at determining the best performing service composition deployments validating the utility of our approach

    Peer-to-Peer Grids

    Get PDF
    We describe Peer-to-Peer Grids built around Integration of technologies from the peer-to-peer and Grid fields. We focus on the role of Web services linked by a powerful event service using uniform XML interfaces and application level routing. We describe how a rich synchronous and asynchronous collaboration environment can support virtual communities built on top of such infrastructure. Universal access mechanisms are discussed

    An Efficient Scheme for Aggregation and Presentation of Network Performance

    Get PDF
    The Internet is presently being used to support increasingly complex interaction models as a result of more and more applications, services and frameworks becoming network centric. Efficient utilization of network and networked resources is of paramount importance. Network performance gathering is a precursor to any scheme that seeks to provide adaptive routing capabilities for interactions. In this paper we present a network performance aggregation framework that is extensible and appropriate for distributed messaging systems that span multiple realms, disparate communication protocols and support different applications
    • …
    corecore