
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

11-1-2012

Performance Modeling to Support Multi-Tier
Application Deployment to Infrastructure-As-A-
Service Clouds
Wes Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Shrideep Pallickara

Olaf David

Jim Lyon

Mazdak Arabi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wes; Pallickara, Shrideep; David, Olaf; Lyon, Jim; Arabi, Mazdak; and Rojas, Ken, "Performance Modeling to Support Multi-
Tier Application Deployment to Infrastructure-As-A-Service Clouds" (2012). School of Engineering and Technology Publications. 17.
https://digitalcommons.tacoma.uw.edu/tech_pub/17

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Washington: UW Tacoma Digital Commons

https://core.ac.uk/display/228619658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/17?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas

This conference proceeding is available at UW Tacoma Digital Commons: https://digitalcommons.tacoma.uw.edu/tech_pub/17

https://digitalcommons.tacoma.uw.edu/tech_pub/17?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Performance Modeling to Support Multi-Tier Application Deployment to
Infrastructure-as-a-Service Clouds

Wes Lloyd1,2, Shrideep Pallickara1, Olaf David1,2,
Jim Lyon2, Mazdak Arabi2

1Department of Computer Science
2Department of Civil and Environmental Engineering

Colorado State University, Fort Collins, USA
wes.lloyd, shrideep.pallickara, olaf.david, jim.lyon,

mazdak.arabi@colostate.edu

Ken Rojas
USDA-Natural Resource Conservation Service

Fort Collins, Colorado USA
Ken.Rojas@ftc.usda.gov

Abstract— Infrastructure-as-a-service (IaaS) clouds support
migration of multi-tier applications through virtualization of
diverse application stack(s) of components which may require
various operating systems and environments. To maximize
performance of applications deployed to IaaS clouds while
minimizing deployment costs, it is necessary to create virtual
machine images to host application components with
consideration for component dependencies that may affect load
balancing of physical resources of VM hosts including CPU
time, disk and network bandwidth. This paper presents results
of an investigation utilizing physical machine (PM) and virtual
machine (VM) resource utilization statistics to build
performance models to predict application performance and
rank performance of application component deployment
configurations deployed across VMs. Our objective was to
predict which component compositions provide best
performance while requiring the fewest number of VMs.
Eighteen individual resource utilization statistics were
investigated for use as independent variables to predict service
execution time using four different modeling approaches.
Overall CPU time was the strongest predictor of execution
time. The strength of individual predictors varied with respect
to the resource utilization profiles of the applications. CPU
statistics including idle time and number of context switches
were good predictors when the test application was more disk
I/O bound, while disk I/O statistics were better predictors
when the application was more CPU bound. All performance
models built were effective at determining the best performing
service composition deployments validating the utility of our
approach.

Keywords Cloud Computing; Infrastructure-as-a-Service;
Performance Modeling; Provisioning Variation; Virtualization

I. INTRODUCTION
Migration of multi-tier client/server applications to

Infrastructure-as-a-Service (IaaS) clouds requires
applications be decomposed into sets of service-based
components known as the application stack. Application
stacks consist of components such as web server(s),
application server(s), proxy server(s), database(s), file
server(s) and other servers/services.

Infrastructure-as-a-Service clouds support better
utilization of server infrastructure by enabling multiplexing
of resources. Infrastructure supporting specific applications

can be scaled based on demand while multiple applications
share the physical infrastructure through the use of server
virtualization. IaaS clouds consisting of many physical
servers with one or more multi-core CPUs can host Virtual
Machines (VMs) enabling resource elasticity where the
quantity, size, and location of VMs can change dynamically
to meet varying system demand.

Many challenges exist when deploying multi-tier
applications to Infrastructure-as-a-Service clouds. VM
image composition requires application components to be
composed across a set of VM images. Resource contention
should be minimized by taking advantage of opportunistic
placements by collocation of codependent components.
Provisioning variation refers to the uncertainty of the
physical location of VMs when deployed to IaaS clouds [2].
VM physical location could lead to performance
improvements or degradation depending on component
resource requirements and interdependencies. Internal
resource contention occurs when application VMs are
provisioned to the same physical machines (PMs) while
competing for the same resources. External resource
contention can occur when different applications share
physical infrastructure an important issue for public clouds.
Virtualization overhead refers to the costs associated with
emulating a computer as a software program on a physical
host computer. This overhead varies depending on the
approaches used to multiplex physical resources among
virtual hosts. Virtualization hypervisors vary with respect to
their ability to minimize this overhead with some generally
responding better to certain resource sharing and simulation
scenarios than others [1][4][5][16]. Resource provisioning
refers to the challenge of allocating adequate virtual
infrastructure to meet performance requirements while
accounting for the challenges of image composition,
provisioning variation, resource contention, and
virtualization overhead. Research and investigation into
approaches supporting autonomic resource provisioning also
known as autonomic infrastructure management is an active
area of cloud computing research [17][18][19][20].

Service compositions must be determined which map
application stacks across VM images. Determining
beneficial combinations of components which multiplex
resources without causing unwanted resource contention
poses a challenge. Component compositions will vary for
multi-tier applications as applications have different

application stacks of components and res
profiles further complicating determinatio
component deployments.

Using brute force performance testin
optimal placements is only feasible for a
small numbers of components. Bell's numb
of partitions of a set (k) consisting of (n) m
we consider an application as a set of (n) c
the total number of possible component com
application is Bell's number (k). Table 1 sh
Bell numbers describing the possible numb
compositions. As the number of componen
possible number of service compositions
making the use of brute force testing
performance impractical. Web applications
applications which aggregate many da
application programming interfaces (AP
application stacks with a large number
Complicating matters further, public IaaS clo
provide the ability to control VM placem
difficult, if not impossible, to deploy all pos
Exclusive reservation of PMs may be a
additional cost enabling granular contr
placement of VMs.

TABLE I. MULTI-TIER APPLICATION SERVIC

Number of Components (n) Number of C
3
4
5
6
7
8 4

An exponential generating function t
numbers is given by the formula:

Performance models hold promise as a
evaluate a large number of possible servi
without physically deploying and testing
performance models should be able to pred
outcomes of VM placement and servic
allowing brute force testing of the entire con
to be avoided. Collecting training data to tr
models should be easier than performing br
of all service compositions. Models sho
ability to make reasonably accurate perform
with reasonable amounts of time spent co
data and training models.

This paper presents results of an explora
investigates building multi-tier applicati
models using resource utilization statistics
using different resource utilization statistic
variables for predicting service response tim
Performance models of multi-tier applicati

2

source utilization
on of ideal VM

ng to determine
applications with
ber is the number
members [21]. If
components, then
mpositions for an
hows the first few
ber of component
nts increases, the
s grows rapidly

g to benchmark
s such as mashup
ata sources and
PIs) may have
of components.

ouds often do not
ments making it
ssible placements.
available for an
rol of physical

CE COMPOSITIONS

ompositions (Bn)
5

15
52
203
877

4,140

to generate Bell

means to rapidly
ice compositions
g them. Good
dict performance
ce compositions
nfiguration space
train performance
rute force testing
ould provide the
mance predictions
ollecting training

atory study which
ion performance
s. The utility of
s as independent

me is investigated.
ions deployed to

IaaS clouds hold promise to (1) guid
placement across VM images, an
virtual infrastructure managemen
predicting resource requirements f
goals.

The following research questi
support of our investigation on In
application performance modeling:

1) (Independent Variables) Whi

utilization statistics are most
performance of different application

2) (Profiling Data) How shou
data be treated for use in performa
profiling data from multiple VMs
separeatly?

3) (Exploratory Modeling) Co
regression (MLR), multivariate ada
(MARS), and an artificial neural
model techniques appear to be
performance and service compositio

II. RELATED

Rouk identified the challenge
machine images which compos
components for migrating m
applications to IaaS clouds in [3].
implications and higher hosting co
hoc compositions are used resultin
contention for physical resources.
classes of approaches for providing
and management of virtual i
multivariate optimization (perfor
feedback control. Multivariate o
attempt to support better appli
modeling the tuning of multiple sy
the best configurations. Feedback c
on process control theory attempt to
by iteratively making changes and
real time using live systems. Feed
have been built using reinforcemen
vector machines (SVMs) [18], ANN
function [29]. Performance mode
MLR [20], ANNs [17][19], and
approaches which combine the use
for model initialization and apply re
include: [17][18][27][28].

Multivariate optimization approa
configurations enabling a much
exploration space of system configu
Time to collect and analyze model t
a trade-off between model acc
Additionally performance models
complexity. More complex model
independent variables and data samp
build and compute but this invest
model accuracy.

de application component
nd (2) support real-time
nt for IaaS clouds by
for specific performance

ions are investigated in
nfrastructure-as-a-Service

ich VM and PM resource
helpful for predicting

n service compositions?
uld resource utilization
nce models? Should VM
s be combined or used

mparing multiple linear
aptive regression splines

network (ANN), which
est predict application
on performance ranks?

WORK
of creating good virtual

se together application
multi-tier client/server
. Negative performance
osts may result when ad
ng in potential unwanted
 Xu et al. identify two

g autonomic provisioning
infrastructure in [17]:
rmance modeling), and
optimization approaches
cation performance by

ystem variables to predict
control approaches based
o improve configurations
d observing outcomes in
dback control approaches
nt learning [17], support
Ns [27][28], and a fitness
ls have been built using

d SVMs [18]. Hybrid
of a performance model

eal time feedback control

aches can model far more
larger portion of the

urations to be considered.
training datasets results in
curacy vs. availability.

trade-off accuracy vs.
s with larger numbers of
ples require more time to
tment can lead to better

3

Feedback control approaches apply control system theory
to actively tune resources to meet pre-stated service level
agreements (SLAs). Feedback control systems do not
determine optimal configurations as they only consider a
subset of all possible configurations limited by observations
of configurations seen in real time. Feedback control
approaches may produce inefficient configurations,
particularly upon system initialization. Hybrid approaches
combine performance modeling and feedback control to
provide better control decisions more rapidly. Hybrid
systems use training datasets to initialize performance
models to better inform control decisions immediately upon
start-up. Control decisions are further improved as the
system operates and collects additional data in real time.
Hybrid approaches often use simplified performance models
trading off accuracy for speed of computation and
initialization.

Wood et al. developed Sandpiper, a black-box and gray-
box resource manager for VMs [20]. Sandpiper, a feedback
control approach, was designed to oversee server partitioning
and was not designed specifically for IaaS. Sandpiper
detects “Hotspots” when provisioned architecture fails to
meet service demand. Sandpiper performs only vertical
scaling including increasing available resources to VMs, and
VM migration to less busy PMs but does not horizontally
scale the number of VMs for load balancing. Sandpiper uses
a MLR performance model to predict service time by
considering CPU utilization, network bandwidth utilization,
page fault rate, memory utilization, request drop rate, and
incoming request rate as independent variables. Xu et al.
developed a resource learning approach for autonomic
infrastructure management [17]. Both application agents and
VM agents were used to monitor performance. A
state/action table was built to record performance quality
changes resulting from control events. Their resource
learning approach only considered VM memory allocation,
VM CPU cores, and CPU scheduler credit. An ANN model
was added to predict reward values to help improve
performance upon system initialization when the state/action
table was only sparsely populated. Kousiouris et al.
benchmarked all possible configurations for different task
placements across several VMs running on a single PM [19].
From their observations they developed both a MLR model
and an ANN to model performance. Their research was not
extended to perform resource control but focused on
performance modeling to predict the performance
implications of task placements. Kousiouris et al.’s approach
used an ANN to model task performance for different VM
configurations on a single machine. They contrasted using a
ANN model with a MLR model. Model independent
variables included: CPU scheduling time, and location of
tasks (same CPUs with L1 & L2 cache sharing, adjacent
CPUs with L2 cache sharing, and non-adjacent CPUs).
Niehorster et al. developed an autonomic resource
provisioning system using support vector machines (SVMs)
[18]. Their system responds to service demand changes and
alters infrastructure configurations to enforce SLAs. They
performed both horizontal and vertical scaling of resources
and dynamically configured application specific parameters.

Niehorster et al.’s performance model primarily considered
application specific parameters. The only virtual
infrastructure parameters considered in their performance
model included # of VMs, VM memory allocation, and VM
CPU cores.

III. PAPER CONTRIBUTIONS
Existing approaches using performance models to

support autonomic infrastructure management do not
adequately consider performance implications of where
application components are physically hosted across VMs.
Additionally, existing approaches do not consider disk
utilization statistics, and only one approach has considered
implications of network I/O throughput [20]. This paper
extends prior work by investigating the utility of using VM
and PM resource utilization statistics as predictors for
performance models for applications deployed to IaaS
clouds. Use of application performance models can support
determination of ideal component compositions which
maximize performance using minimal resources to support
autonomic multi-tier application deployment across VMs.
These performance models can also support autonomic IaaS
cloud virtual infrastructure management by predicting
outcomes of potential configuration changes without
physically testing them. To support our investigation we
modeled performance of two variants of a multi-tier
scientific erosion model. The variants serve as surrogates for
common multi-tier applications: an application-server bound
application and a relational database bound application.

IV. EXPERIMENTAL INVESTIGATION

A. Experimental Setup
The test infrastructure used to explore multi-tier

application migration in [26] was extended to explore our
application performance modeling research questions
presented in section 1. Two variants of the Revised
Universal Soil Loss Equation – Version 2 (RUSLE2), an
erosion model, were deployed as a web service and tested
using a private IaaS cloud environment. RUSLE2 contains
both empirical and process-based science that predicts rill
and interrill soil erosion by rainfall and runoff [6]. RUSLE2
was developed primarily to guide conservation planning,
inventory erosion rates, and estimate sediment delivery and
is the USDA-NRCS agency standard model for sheet and rill
erosion modeling used by over 3,000 field offices across the
United States. RUSLE2 is a good candidate to prototype
multi-tier application performance modeling because its
architecture consisting of a web server, relational database,
file server, and logging server is analogous to many typical
multi-tier client/server based applications.

RUSLE2 was deployed as a JAX-RS RESTful JSON-
based web service hosted by Apache Tomcat [9]. The
Object Modeling System 3.0 (OMS 3.0) framework [7][22]
using WINE [8] was used as middleware to support model
integration and deployment as a web service. OMS was
developed by the USDA–ARS in cooperation with Colorado
State University and supports component-oriented simulation
model development in Java, C/C++ and FORTRAN.

4

A Eucalyptus 2.0 [10] IaaS private cloud was built and
hosted by Colorado State University consisting of 9 SUN
X6270 blade servers on the same chassis sharing a private
Giga-bit VLAN with dual Intel Xeon X5560-quad core 2.8
GHz CPUs each with 24GB ram and 146GB HDDs. 8 blade
servers were configured as Eucalyptus node-controllers, and
1 blade server was configured as the Eucalyptus cloud-
controller, cluster-controller, walrus server, and storage-
controller. The cloud controller server was supported by
Ubuntu Linux (2.6.35-22) 64-bit server 10.10, while node
controllers which hosted VMs used CentOS Linux (2.6.18)
64-bit server. Eucalyptus managed mode networking was
used to isolate experimental VMs on their own private
VLANs. The XEN hypervisor version 3.4.3 supported by
QEMU version 0.8.2 was used to provide VMs [16].
Version 3.4.3 of the hypervisor was selected after testing
indicated it provided the best performance when compared
with other versions of XEN (3.1, 4.0.1, and 4.1).

To facilitate testing, ensemble runs, groups of individual
modeling requests bundled together were used. To invoke
the web service a client sends a JSON object representing a
collection of parameterized model requests with values for
management practice, slope length, steepness, latitude, and
longitude. Model results are computed and returned using
JSON object(s). Ensemble runs are processed by dividing
grouped modeling requests into individual requests which
are resent to the web service, similar to the “map” function
of MapReduce. A configurable number of worker threads
concurrently execute individual runs in parallel. Modeling
results are then combined (reduced) and returned as a single
JSON response object. A test generation program created
randomized ensembles. Latitude and longitude coordinates
were randomly selected within a bounding box from the U.S.
state of Tennessee. Slope length, steepness, and the
management practice parameters were also randomized. 20
randomly generated ensemble tests with 100 model runs
each were used to test performance of 15 different service
compositions. Before executing each 100 model-run
ensemble test, a smaller 25 model-run ensemble test was
executed to warm up the system. The warm up test was
warranted after observing slow spatial query performance
from postgresql on startup.

A test script was used to automatically configure service
placements and collect VM and PM resource utilization
statistics while executing ensemble tests. Cache clearing
using the Linux virtual memory drop_caches function was
used to purge all caches, dentries and inodes before each test
was executed to negate training affects resulting from
reusing ensemble tests. The validity of this approach was
verified by observing CPU, file I/O, and network I/O
utilization statistics for the automated tests with and without
cache clearing. When caches were not cleared the number of
disk sector reads dropped after the system was initially
exposed to the test dataset. When caches were force-cleared
the system exhibited more disk reads confirming it was
forced to reread data each time. Initial experimental
observations showed that as the number of records stored in
the logging database increased, ensemble test performance
declined. To work around performance effects of the

growing logs and to eliminate running out of disk space, the
Codebeamer logging component was removed and
reinstalled after each ensemble test run. Additionally all log
files for all application components were purged after each
ensemble test. These steps allowed several thousand
ensemble tests using all of the required service compositions
to be automatically performed without intervention.

B. Application Components
Table II describes the four application services

(components) used to implement RUSLE2's application
stack. The Model M component hosts the model
computation and web services using the Apache Tomcat
application server. The Database D component hosts the
geospatial database which resolves latitude and longitude
coordinates to assist in parameterizing climate, soil, and
management data for RUSLE2. Postgresql was used as a
relational database and PostGIS extensions were used to
support geospatial functionality [11] [12]. The file server F
component was used by the RUSLE2 model to acquire XML
files to parameterize data for model runs. NGINX [13], a
lightweight high performance web server provided access to
a library of static XML files which were on average ~5KB
each. The logging L component provided historical tracking
of modeling activity. The codebeamer tracking facility
supported by the Derby relational database was used to log
model activity [14]. A simple JAX-RS RESTful JSON-
based web service was developed to decouple logging
requests from the RUSLE2 service calls. This service
implemented an independent logging queue to prevent
logging delays from interfering with RUSLE2 performance.
HAProxy was used to redirect modeling requests from a
public IP to potentially one or more backend M VMs.
HAProxy is a dynamically configurable very fast load
balancer which supports proxying both TCP and HTTP
socket-based network traffic [15].

TABLE II. RUSLE2 APPLICATION COMONENTS

Component Description

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object
Modeling System (OMS 3.0)

D Database

Postgresql-8.4, PostGIS 1.4.0-2
Geospatial database consists of soil data (1.7 million
shapes, 167 million points), management data (98
shapes, 489k points), and climate data (31k shapes, 3
million points), totaling 4.6 GB for the state of TN.

F File server
nginx 0.7.62
Serves XML files which parameterize the RUSLE2
model. 57,185 XML files consisting of 305MB.

L Logger

Codebeamer 5.5, Apache Tomcat (32-bit)
Custom RESTful JSON-based logging wrapper web
service. Ia-32libs support operation in 64-bit
environment.

C. Tested Service Compositions
RUSLE2’s application stack of 4 components can be

deployed 15 possible ways across 4 physical node
computers. Tables III shows the 15 service compositions
tested labeled as SC1-SC15. To achieve each of the
compositions a single composite VM image was created with

5

all components installed (M, D, F, L). Four PMs were used
to host one composite VM each. The testing script
automatically enabled/disabled services as needed to achieve
all service compositions (SC1-SC15).

TABLE III. TESTED SERVICE COMPOSITIONS

 VM 1 VM 2 VM 3 VM 4
SC1 MDFL
SC2 MDF L
SC3 MD FL
SC4 MD F L
SC5 M DFL
SC6 M DF L
SC7 M D F L
SC8 M D FL
SC9 M DL F

SC10 MF DL
SC11 MF D L
SC12 ML DF
SC13 ML D F
SC14 MDL F
SC15 MLF D

Every VM ran Ubuntu Linux 9.10 64-bit server and was

configured with 8 virtual CPUs, 4 GB memory and 10GB of
disk space. Drawbacks to our scripted testing approach
include that our composite image had to be large enough to
host all components, and for some compositions VM disks
contained installed but non-running components. These
drawbacks are not expected to be significantly relevant to
performance.

D. Resource Utilization Statistics
Table IV describes the 18 resource utilization statistics

collected using an automated profiling script. The profiling
script parsed the Linux operating system /proc/stat,
/proc/diskstats, /proc/net/dev and
/proc/loadavg files. Initial resource utilization statistics
were captured before execution of each ensemble test. After
ensemble tests completed resource utilization statistics were
captured and deltas calculated representing the resources
expended throughout the duration of the ensemble test’s
execution. This data was recorded to a series of output files
and uploaded to the dedicated blade server performing the
testing. The same resource utilization statistics were
captured for both VMs and PMs, but 8 statistics were found
to have a negligible value for PMs. Resource utilization
statistics collected for PMs are designated with “P”, and for
VMs with “V” in the table. Some statistics collected are
likely redundant in that they are different representations of
the same system properties. Subtleties in how related
statistics are collected and expressed may provide
performance modeling benefits and were captured for
completeness is this study.

Performance models were built to predict ensemble
execution time for different service compositions of
RUSLE2. Using estimated average ensemble execution
times for service composition rank predictions were made.

Accurate performance rank predictions can be used to
identify ideal compositions of components to support
autonomic component deployment.

TABLE IV. RESOURCE UTILIZATION STATISTICS

Statistic Description
P/V CPU time CPU time in ms
P/V cpu usr CPU time in user mode in ms
P/V cpu krn CPU time in kernel mode in ms
P/V cpu_idle CPU idle time in ms
P/V contextsw Number of context switches
P/V cpu_io_wait CPU time waiting for I/O to complete
P/V cpu_sint_time CPU time servicing soft interrupts
V dsr Disk sector reads (1 sector = 512 bytes)
V dsreads Number of completed disk reads
V drm Number of adjacent disk reads merged
V readtime Time in ms spent reading from disk
V dsw Disk sector writes (1 sector = 512 bytes)
V dswrites Number of completed disk writes
V dwm Number of adjacent disk writes merged
V writetime Time in ms spent writing to disk
P/V nbr Network bytes sent
P/V nbs Network bytes received
P/V loadavg Avg # of running processes in last 60 sec

E. Application Variants
Our investigation tested two variants of RUSLE2 which

we refer to herein as the “d-bound” for the database bound
and the “m-bound” for the model bound application. By
testing two variants of RUSLE2 we hoped to gain insight
into performance modeling by using two versions of
RUSLE2 with different resource utilization profiles. For the
d-bound RUSLE2, two primary geospatial queries were
modified to perform a join on a nested query (as opposed to
a table). The m-bound RUSLE2’s geospatial queries used
the ordinary table joins. The SC1 “d-bound” deployment
required on average 104% more CPU time and 17,962%
more disk sector reads (dsr) than the “m-bound” model.
This modification significantly increased database CPU
time and disk reads. Average ensemble execution time for
all service compositions was approximately ~29.3 seconds
for the m-bound model, and 4.7x greater at ~137.2 seconds
for the d-bound model.

V. EXPERIMENTAL RESULTS
Table V summarizes tests completed for this study

totaling approximately 300,000 model runs in 3,000
ensemble tests. The effectiveness of using the resource
utilization statistics from table IV as independent variables
to predict service composition performance (RQ1) are
presented in section 5.1. Section 5.2 discusses
experimental results which investigate how to best compose
resource utilization statistics for use in performance models
(RQ2). Section 5.3 concludes by presenting results of
performance model effectiveness for predicting ensemble

6

execution time and service composition performance ranks
for different application component compositions (RQ3).

TABLE V. SUMMARY OF TESTS

Model Trials Ensembles
/Trial

Service
Comps.

Model
Runs

Ens.
Runs

d-bound 2 20 15 60k 600
m-bound 3 20 15 90k 900
m-bound 1 100 15 150k 1,500
Totals 6 300,000 3,000

A. Independent Variables
This study investigated the utility of resource utilization

statistics describing CPU utilization, disk I/O, and network
I/O of both VMs and PMs for performance modeling as
described in table IV. To investigate the predictive strength
of each independent variable we performed separate linear
regressions for each independent variable to predict
ensemble execution time. R2 is a measure of model quality
which describes the percentage of variance explained by the
model’s independent variable. Adjusted R2 is reported
opposed to multiple R2 because adjusted R2 is more
conservative as it includes an adjustment which takes into
account the number of predictors in the model [23].
Statistics reported in table VI used 20 ensemble runs each
for the 15 service compositions for both the “m-bound” and
“d-bound” models. Untested statistics are indicated by
“n/a”. In these cases resource utilization was typically zero.
Total resource utilization statistics were calculated by
totaling values from VMs and PMs used in the service
compositions.

CPU time is shown to predict the most variance for both
models. Large differences in R2 for “d-bound” compared to
“m-bound” are shown in bold. For the “d-bound” model dsr
and dsreads were less useful predictors, while contextsw and
cpu_idle were shown to be better predictors. PM resource
utilization statistics were generally found to be less useful as
indicated by total R2 values. No single PM statistic for the
“m-bound” model achieved better than R2=.086, while PM
statistics for the “d-bound” model appeared better but not
great with nbs as the strongest predictor at R2=.3385.
 Besides having strong R2 values, good predictor variables
for use in MLRs should have normally distributed data. To
test normality of our resource utilization statistics the
Shapiro-Wilk normality test was used [24]. 100 ensemble
runs were made for each of the 15 service compositions for
the “m-bound” model. Combining service composition data
together was shown to decrease normality. Normality tests
showed an average of 9 resource utilization statistics had
normal distributions for individual compositions. When
data for compositions was combined only loadavg,
cpu_sint_time, and cpu_krn had strong normal distributions
for the “m-bound” model and loadavg, CPU time, cpu_usr,
and cpu_krn for the “d-bound” model. Ensemble time
appeared to be normally distributed for both applications,
but appeared more strongly normally distributed for “d-

bound”. Histogram plots for CPU time and dsr are shown in
figure 1. CPU time and other related CPU time statistics
(cpu_usr, cpu_krn) were among the strongest predictors of
ensemble execution time for both models. Dsr was a better
predictor for “m-bound” and its distribution appears more
normal than for “d-bound”. The plots visually confirm
results of the Shapiro-Wilk normality tests.

TABLE VI. INDEPENDENT VARIABLE STRENGTH

Statistic Adjusted R2 “m-bound” Adjusted R2 “d-bound”

 VM PM VM PM
CPU time 0.7162 -0.0033 0.5096 0.1406

cpu usr 0.7006 -0.0019 0.444 0.04437
dsr 0.3693 n/a 0.02613 n/a

dsreads 0.3129 n/a 0.02606 n/a
cpu krn 0.1814 n/a 0.2958 0.2221
dswrites 0.1705 n/a 0.1151 n/a

dsw 0.1412 n/a 0.02292 n/a
dwm 0.1374 n/a 0.01528 n/a

contextsw 0.0618 -0.001 0.4592 0.1775
cpu_io_wait 0.0514 0.086 0.02528 0.05718

writetime 0.0451 n/a -0.001199 n/a
loadavg 0.0168 0.0132 0.04321 0.004962

cpu_sint_time 0.0112 0.0141 0.02251 0.00003713
readtime 0.0094 n/a 0.02753 n/a

nbs 0.0042 0.0039 0.01852 0.3385
nbr 0.0041 n/a 0.01858 0.3368

cpu_idle 0.004 -0.0001 0.2468 0.2542
drm 0.0005 n/a 0.0261 n/a

Total R2 2.938 0.1109 2.341 1.576

B. Treatment of Resource Utilization Data
The RUSLE2 application’s 4 components (M, D, F, L)

were distributed across 1 to 4 VMs. Resource utilization
statistics were collected at the VM and PM level. Two
treatments of the data are possible. Resource utilization
statistics can be combined for all VMs and used to model
performance: RUdata=RUM+RUD+RUF+RUL, or only
resource utilization statistics for the VM hosting a particular
component can be used to model performance:
RUdata={RUM; RUD; RUF; RUL;} To test the utility of both
data handling approaches 10 MLR models were generated.
A separate training and test data set were collected using 20
ensemble runs for each of the 15 service compositions for
both the “m-bound” and “d-bound” RUSLE2. Results of the
MLR models are summarized in table VII.
For the models described in table VII VM data (not PM) for
all 18 independent variables was used. Adjusted R2 values
describe the variance explained by the models. The root
mean squared error (RMS) expresses the differences between
the predicted and observed values and serves to provide a
measure of model accuracy. A statistically significant model
(p<.05) will predict 95% of ensemble execution times with
less than +/- 2 RMS error from the actual values [25].
RMStrain describes error at predicting ensemble times for the
training dataset and RMStest describes error at predicting
ensemble times using the test dataset. For each of the service

7

Figure 1. CPU time and Disk Sector Read Distribution Plots

TABLE VII. MULTIPLE LINEAR REGRESSION PERFORMANCE MODELS

Model Data Adj. R2 RMStrain RMStest Avg. Rank Error
d-bound RUM .9982 642.78 967.35 .13
d-bound RUD .9983 622.24 1248.24 .4
d-bound RUF .9984 615.64 606.94 .27
d-bound RUL .9983 621.99 978.92 .4
d-bound RUMDFL .9107 4532.85 44903.96 1.73
m-bound RUM .8733 576.05 759.36 1.47
m-bound RUD .67 929.54 971.85 2.13
m-bound RUF .7833 775.70 866.18 2
m-bound RUL .6247 991.29 42570.5 2.4
m-bound RUMDFL .8546 616.98 807.34 1.2

compositions an average estimate for ensemble execution
time was calculated. The estimated average ensemble
execution time was used to generate performance rank
predictions for each of the 15 service compositions. The
average rank error is the average error of actual vs. predicted
ranks.

Analysis of model results shows that for the “d-bound”
performance model, CPU idle time from individual VMs is
an excellent predictor of ensemble execution time. R2 for
cpu_idle_time for the M, D, F, L models is .7716, .7844,
.6041, and .4223 respectively but only .2468 when
combining VM statistics. This is in contrast to .0223, -.0024,
.0271, .1199 and combined .0039 for the “m-bound” model.
Further analysis reveals that the “d-bound” model makes
93.6x more disk sector reads than “m-bound” but only
requires 2x as much CPU time while having 5.1x more idle
CPU time. The “d-bound” model waits while this I/O is
occurring making CPU idle time an excellent predictor for
ensemble execution time for the “d-bound” application. The
number of context switches for the busiest component seems
to be a good predictor with D for “d-bound” at R2=.4619 and
M for the “m-bound” at R2=.4786. The strength of using the
number of context switches as a predictor of other VMs was
less significant.

C. Performance Models
Combined resource utilization statistics (RUMDFL) were

used as training data for 4 modeling approaches: MLR,
stepwise multiple linear regression (MLR-step), MARS, and

a simple single hidden layer ANN [24]. We investigated
both MLR and stepwise MLR. MLR models use every
independent variable provided to predict the dependent
variable. Stepwise MLR begins by modeling the dependent
variable using the complete set of independent variables but
after each step adds or drops predictors based on their
significance to test various combinations until the best model
is found which explains the most variance (R2). MARS is an
adaptive extension of MLR which works by splitting
independent variables into multiple basis functions and then
fits a linear regression model to those basis functions [24].
Basis functions used by MARS are piecewise linear
functions in the form of: f(x)={x-t if x>t, 0 otherwise} and
g(x)=(t-x if x<t, 0 otherwise}. Both stepwise MLR and
MARS were chosen because they generally provide some
small improvement over traditional MLR and were easy to
implement in R. ANNs are a very popular statistical
modeling technique which excels at handling complex
nonlinear relationships in the data. We tested single hidden
layer ANN models supported by the R statistical software
package [24] to predict ensemble execution times. R’s
ANNs use the sigmoid function, a bounded logistic function
used to introduce nonlinearity in the model. A summary of
performance models for the “m-bound” and “d-bound”
application are shown in table VIII.

TABLE VIII. PERFORMANCE MODELS

Model Type Adj. R2 RMStrain RMStest Avg. Rank Error
d-bound MLR .9107 4532.85 44903.96 1.73
d-bound MLR-step .9118 4589.27 43918.55 1.73
d-bound MARS .9180 4472.32 45137.28 1.33
d-bound ANN n/a 4440.03 44094.03 1.6
m-bound MLR .8546 616.98 807.34 1.2
m-bound MLR-step .8571 621.41 799.22 1.33
m-bound MARS .8718 596.45 825.34 1.86
m-bound ANN n/a 595.49 800.71 1.73

R2 values were not available for the ANN. For both
applications, the ANN provided the lowest RMS error for the
training dataset but slightly higher RMS error for the test
dataset compared with stepwise MLR. For the 8 models
RMStrain and RMStest values correlated strongly (R2=.999,
p=2.4•10-10, df=6) suggesting that where a model performs

8

well on training data it will likely perform well on test data.
There was no relationships between rank error and RMStest
(R2=.02064, p=.734, df=6) suggesting that low error for
ensemble time predictions does not guarantee low rank error.
All of the models had some error at predicting service
composition rank but provided functional predictions as they
easily differentiated fast vs. slow service compositions and
accurately determined the top 2 or 3 compositions.

VI. CONCLUSIONS
Modeling performance of service compositions of multi-

tier applications deployed to IaaS clouds can help guide
component composition for application deployments aiming
to provide best performance with minimal virtual resources.
Results of our exploratory investigation on performance
modeling using resource utilization statistics for two variants
of a multi-tier application include:

(RQ1) CPU time and other CPU related statistics were
the strongest predictors of execution time, while disk and
network I/O statistics were less useful. Measured disk and
network I/O utilization statistics for our study suffered from
non-normality and large variance when data from multiple
service compositions were combined together for modeling
purposes. CPU idle time and number of context switches
were good predictors of execution time when the
application’s performance was I/O bound. Disk I/O statistics
were better predictors when the application was more CPU
bound.

(RQ2) The best treatment of resource utilization statistics
for performance modeling, either combining data or using
VM data separately, to achieve best model accuracy was
dependent on each application’s resource utilization profile.

(RQ3) Advanced modeling techniques such as MARS
and ANN provided lower RMSerror for training and test data
sets than MLR but overall all of the modeling approaches
tested had similarly performance at minimizing RMSerror.
Additionally all models determined the best 2 or 3 service
compositions confirming the value of our performance
modeling approach for determining ideal component
compositions to support IaaS cloud multi-tier application
deployment.

REFERENCES
[1] A. Kivity et al., “kvm: the Linux Virtual Machine Monitor,” Proc.

2007 Ottawa Linux Symposium (OLS 2007), Ottawa, Canada, June
27-30, 2007, pp. 225-230.

[2] M. Rehman, M. Sakr, “Initial Findings for Provisioning Variation in
Cloud Computing,” Proc. of the IEEE 2nd Intl. Conf. on Cloud
Computing Technology and Science (CloudCom '10), Indianapolis,
IN, USA, Nov 30 – Dec 3, 2010, pp. 473-479.

[3] M. Vouk, “Cloud Computing – Issues, Research, and
Implementations,” Proc. 30th Intl. Conf. Information Technology
Interfaces (ITI 2008), Cavtat, Croatia, June 23-26, 2008, pp. 31-40.

[4] F. Camargos, G. Girard, B. Ligneris, “Virtualization of Linux
servers,” Proc. 2008 Linux Syposium, Ottawa, Ontario, Canada, July
23-26, 2008, pp. 63-76.

[5] D. Armstrong, K. Djemame, “Performance Issues In Clouds: An
Evaluation of Virtual Image Propagation and I/O Paravirtualization,”
The Computer Journal, June 2011, vol. 54, iss. 6, pp. 836-849.

[6] United States Department of Agriculture – Agricultural Research
Service (USDA-ARS), Revised Universal Soil Loss Equation Version

2 (RUSLE2), http://www.ars.usda.gov/SP2UserFiles/Place/64080510/
RUSLE/RUSLE2_Science_Doc.pdf

[7] O. David et al., “Rethinking modeling framework design: Object
Modeling System 3.0,” Proc. iEMSs 2010 Intl. Congress on Environ.
Modeling and Software, Ottawa, Canada, July 5-8, 2010, 8 p.

[8] WineHQ – Run Windows applications on Linux, BSD, Solaris, and
Mac OS X, http://www.winehq.org/

[9] Apache Tomcat – Welcome, 2011, http://tomcat.apache.org/
[10] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing

System,” Proc. IEEE Intl. Symposium on Cluster Computing and the
Grid (CCGRID 2009), Shanghai, China, May 18-21, 8p.

[11] PostGIS, 2011, http://postgis.refractions.net/
[12] PostgreSQL: The world's most advanced open source database,

http://www.postgresql.org/
[13] nginx news, 2011, http://nginx.org/
[14] Welcome to CodeBeamer, 2011, https://codebeamer.com/ cb/user/
[15] HAProxy – The Reliable, High Performance TCP/HTTP Load

Balancer, http://haproxy.1wt.eu/
[16] P. Barham et al., Xen and the art of virtualization, Proc. 19th ACM

Symposium on Operating Systems Principles (SOSP '03), Bolton
Landing, NY, USA, Oct 19-22, 2003, 14 p.

[17] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning
approach for autonomic cloud management, Journal of Parallel and
Distributed Computing, vol. 72, 2012, pp. 95-105.

[18] O. Niehörster et al., “Autonomic Resource Management with Support
Vector Machines,” Proc. 12th IEEE/ACM Intl. Conf. on Grid
Computing (GRID ‘11), Lyon, France, Sept 21-23, 2011, pp.157-164.

[19] G. Kousiouris, T. Cucinotta, T. Varvarigou, “The effects of
scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized artificial
neural networks,” The Journal of Systems and Software, vol. 84,
2011, pp. 1270-1291.

[20] T. Wood et al., Sandpiper: Black-box and gray-box resource
management for virtual machines, Computer Networks, vol. 53, 2009,
pp. 2923-2938.

[21] W. Chen et al., Crossing and Nesting of Matching and Partitions,
Transactions of the American Mathematical Society, vol. 359, No. 4,
April 2007, pp. 1555-1575.

[22] O. David et al., A software engineering perspective on environmental
modeling framework design: The Object Modeling System,
Environmental Modelling & Software, Available 13 June 2012,
http://www.sciencedirect.com/science/article/pii/S1364815212000886

[23] R.H. Myers, Classical and modern regression with applications, 2nd
Edition, PWS-KENT Publishing Company, Boston, MA, 1994.

[24] J. Adler, R In a Nutshell: A Desktop Quick Reference, First Edition,
O’Reilly, 2010.

[25] P. Teetor, R Cookbook: Proven Recipes for Data Analysis, Statistics,
and Graphics, First Edition, O’Reilly, 2011.

[26] W. Lloyd et al., Migration of multi-tier applications to infrastructure-
as-a-service clouds: An investigation using kernel-based virtual
machines, Proc. 12th IEEE/ACM Intl. Conf. On Grid Computing
(GRID 2011), Lyon, France, Sept 21-23, 2011, pp. 137-143.

[27] P. Lama, X. Zhou, Efficient Server Provisioning with Control for
End-to-End Response Time Guarantee on Multitier Clusters, IEEE
Transactions on Parallel and Distributed Systems, vol. 23, No. 1, Jan
2012, pp. 78-86.

[28] P. Lama, X. Zhou, Autonomic Provisioning with Self-Adaptive
Neural Fuzzy Control for End-to-end Delay Guarantee, Proc. 18th
IEEE/ACM Int. Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS 2010),
Miami Beach, FL, USA, August 17-19, 2010, pp. 151-160.

[29] N. Bonvin, T. Papaioannou, K. Aberer, Autonomic SLA-driven
Provisioning for Cloud Applications, Proc. IEEE/ACM Int.
Symposium on Cluster, Cloud, and Grid Computing (CCGRID 2011),
Newport Beach, CA, USA, 2011, pp. 434-44.

	University of Washington Tacoma
	UW Tacoma Digital Commons
	11-1-2012

	Performance Modeling to Support Multi-Tier Application Deployment to Infrastructure-As-A-Service Clouds
	Wes Lloyd
	Shrideep Pallickara
	Olaf David
	Jim Lyon
	Mazdak Arabi
	See next page for additional authors
	Recommended Citation
	Authors

	untitled

