9 research outputs found

    The observation of Extensive Air Showers from an Earth-Orbiting Satellite

    Full text link
    In this paper we review the main issues that are relevant for the detection of Extensive Air Showers (EAS) from space. EAS are produced by the interaction of Ultra-High Energy Cosmic Particles (UHECP) with the atmosphere and can be observed from an orbiting telescope by detecting air fluorescence UV light. We define the requirements and provide the main formulas and plots needed to design and optimize a suitable telescope. We finally estimate its expected performances in ideal conditions.Comment: 24 pages, 10 figures; submitted to Astroparticle Physics 27 pages, 14 figures; major revision; added new figures and sections; typos fixed. arXiv admin note: substantial text overlap with arXiv:0810.571

    ESAF: Full Simulation of Space-Based Extensive Air Showers Detectors

    Full text link
    Future detection of Extensive Air Showers (EAS) produced by Ultra High Energy Cosmic Particles (UHECP) by means of space based fluorescence telescopes will open a new window on the universe and allow cosmic ray and neutrino astronomy at a level that is virtually impossible for ground based detectors. In this paper we summarize the results obtained in the context of the EUSO project by means of a detailed Monte Carlo simulation of all the physical processes involved in the fluorescence technique, from the Extensive Air Shower development to the instrument response. Particular emphasis is given to modeling the light propagation in the atmosphere and the effect of clouds. Main results on energy threshold and resolution, direction resolution and Xmax determination are reported. Results are based on EUSO telescope design, but are also extended to larger and more sensitive detectors.Comment: 38 pages, 48 figures Corrected typos. Changed content. Added figure

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E1019E\sim 10^{19} eV to beyond E1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission

    The EUSO simulation and analysis framework

    Get PDF
    ESAF is the simulation and analysis software framework developed for the EUSO experiment. ESAF's scope is the whole process of data simulations and data-analysis, from the primary particle interaction in atmosphere to the reconstruction of the event. Based on the ROOT package and designed using Object Oriented technology, ESAF is organized in two main programs: the full montecarlo simulation and the reconstruction framework. The former includes all the relevant physical contributions, shower development in atmosphere, light transport to the detector pupil and detector response, while the latter comprises basic data cleaning, track direction, shower profile and energy reconstruction algorithms. Here we describe the software architecture and its main features

    Requirements and simulation study of the performance of EUSO as external payload on board the International Space Station

    Get PDF
    The "Extreme Universe Space Observatory - EUSO" has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Ray, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from the phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment

    Simulation study of a space based detector for UHECR observation

    Get PDF
    The next generation of experiments devoted to the study of the cosmic rays spectrum above 10^20 eV will be most likely done by means of space based detectors. In order to detect the fluorescence and Cerenkov signal generated by an EAS in atmosphere, severe requirements on the photon collection efficiency and on the triggering capability need to be met. In this paper we report about of preliminary studies of the triggering efficiency of a space based detector as a function of the main detector parameters. All results are obtained by means of a detailed simulation of the shower development, atmospheric response, detector geometry and electronics and trigger behavior in realistic conditions based on the ESAF package, the EUSO simulation and Analysis Framework

    Requirements and simulation study of the performance of EUSO as external payload on board the international space station

    No full text
    none15The ``Extreme Universe Space Observatory - EUSO{''} has been conceived as the first Space mission devoted to the investigation of Ultra High Energy Cosmic Rays, using the Earth's atmosphere as a giant detector. The scientific objectives of the experiment are to observe the UHECR spectrum above the GZK energy, with an improvement of one order of magnitude in the statistics of collected events with respect to the existing experiments, in such a way to study the source distribution in a full sky survey, as well as to open the channel (set a confidence limit) on the neutrino astronomy in this energy range. Supposed to be accommodated as external payload on board the International Space Station, EUSO Phase A study has been positively completed in July 2004. Nowadays, due to funding problems of the Space Agencies involved in the project, EUSO is currently on hold. Nevertheless, as a result of an end-to-end simulation approach, we summarize here the expected scientific performance coming out from Phase A, as well as the expected improvements in the technical performance of the EUSO Instrument to be achieved during Phase B, in order to fulfil the scientific objectives posed as goal of the experiment.noneO. Catalano;G. D. Staiti;M. C. Maccarone;S. Bottai;D. Naumov;M. Pallavicini;A. Petrolini;R. Pesce;A. Thea;C. Berat;S. Moreggia;A. Stutz;J. Dolbeau;E. Plagnol;E. CollaborationO., Catalano; G. D., Staiti; M. C., Maccarone; S., Bottai; D., Naumov; Pallavicini, Marco; Petrolini, Alessandro; R., Pesce; A., Thea; C., Berat; S., Moreggia; A., Stutz; J., Dolbeau; E., Plagnol; E., Collaboratio
    corecore