4 research outputs found

    Dielectric properties characterization of La- and Dy-doped BiFeO3 thin films

    Get PDF
    The dielectric response of La- and Dy- doped BiFeO3 thin films at microwave frequencies (up to 12 GHz) has been monitored as a function of frequency, direct current (dc) electric field, and magnetic field in a temperature range from 25 to 300 °C. Both the real and imaginary parts of the response have been found to be non-monotonic (oscillating) functions of measuring frequency. These oscillations are not particularly sensitive to a dc electric field; however, they are substantially dampened by a magnetic field. The same effect has been observed when the volume of the characterized sample is increased. This phenomenon is attributed to the presence of a limited number of structural features with a resonance type response. The exact origin of these features is unknown at present. Leakage current investigations were performed on the whole set of films. The films were highly resistive with low leakage current, thereby giving us confidence in the microwave measurements. These typically revealed ‘N'-type I-V characteristic

    Ratiometric temperature measurement using negative thermal quenching of intrinsic BiFeO3 semiconductor nanoparticles

    Get PDF
    A strategy for optical nanothermometry using the negative thermal quenching behavior of intrinsic BiFeO3semiconductor nanoparticles has been reported here. X-ray diffraction measurement shows polycrystalline BiFeO3nanoparticles with a rhombohedral distorted perovskite structure. Transmission electron microscopy shows agglomerated crystalline nanoparticles around 20 nm in size. Photoluminescence measurements show that intensity of the defect level emission increases significantly with temperature, while the intensity of near band emission and other defect levels emissions show an opposite trend. The most important figures of merit for luminescence nanothermometry: the absolute (Sa) and the relative sensor sensitivity (Sr) and the temperature resolution (?Tm) were effectively resolved and calculated. The relative sensitivity and temperature resolution values are found to be 2.5% K-1and 0.2 K, respectively which are among the highest reported values observed so far for semiconductors

    Confirmation of spatial coexistence of magneto-electric coupling in Bi0.7Dy0.3FeO3 thin films integrated with Si/ZnO film for MEMS and memory applications

    No full text
    Spatial presence of ferroelectric and magnetic domain structure of the multiferroic dysprosium (Dy)-modified BiFeO3 (Bi0.7Dy0.3FeO3 or BDFO) deposited on ZnO at the macroscopic level is investigated in this paper. BDFO thin film is deposited on Si/ZnO using pulsed laser deposition (PLD) technique. Magnetic properties are observed by saturated magnetic hysteresis at room temperature. Ferroelectric hysteresis loop (P–E) is used to compare the response of magnetic field on ferroelectric properties at room temperature of BDFO and BDFO/ZnO thin films. The changes in ferroelectric hysteresis loops with magnetic field ensures about the magnetoelectric (M–E) coupling in BDFO/ZnO films. A well-saturated ferroelectric hysteresis loop with remarkable improvement in remanent polarization (∼1.72 μC/cm2) is observed. The obtained results confirm the coexistence of ferromagnetic and ferroelectric ordering with significant coupling at room temperature. The coupling behavior and magnetic transition are also verified using multimode atomic force microscope by applying bias between sample and MFM tip. The leakage current density is measured in the order of 10−5 A/cm2. Integration of BDFO films with ZnO piezoelectric thin film suggests in principle its potential in applications of micro electro mechanical systems (MEMS) as well as in memory devices and in strong history dependent systems. Keywords: Multiferroics, Multimode atomic force microscopy, Pulsed laser deposition, MEM
    corecore