2,212 research outputs found

    Pulsed laser excitation of phosphate stabilised silver nanoparticles

    Get PDF
    Laser flash photolysis studies were carried out on two types of silver nanoparticles prepared by γ-radiolysis of Ag+ solutions in the presence of polyphosphate as the stabiliser. Type I silver nanoparticles displayed a surface plasmon band at 390 nm. Type II silver nanoparticles showed a 390 nm surface plasmon band with a shoulder at 550 nm. On photoexcitation in the surface plasmon band region, using 35 picosecond laser pulses at 355 nm and 532 nm, the type II solutions showed transient bleaching and absorption signals in the 450-900 nm region, which did not decay appreciably up to 5 nanoseconds. These transient changes were found to get annealed in the intervalt where 5ns < t < 100 ns. Extended photolysis of the nanoparticle solutions with repetitive laser pulses resulted in a decrease in the values of the average particle size which were measured by employing the dynamic light scattering technique

    Electrical, Magnetic and Electrochemical Behaviour of Nanocrystalline Fe70.5Nb4.5Cu1Si16B8 Alloy

    Get PDF
    The electrical, magnetic and electrochemical behaviour of Fe70.5Nb..5CuiSi,638 has been studied in the as-received and heat treated conditions. The as-received material was amorphous which crystallized in two different stages at 780K and 940K when heated continuously. At the primary crystallization stage, nanometre sized grain of ordered FesoSi20 phase was formed. The superior soft magnetic properties were achieved after primary crystall-ization which were attributed to the averaging out of magnetocrystalline anisotropy due to the nanocrystalline structure and the reduction of magnetoelastic anisotropy energy due to the negative magnetosirictive nature of Fe8oSi20 phase and positive magnetosirictive value of the rest amorphous phase. After primary crystallization spon-taneous passivating nature of the alloy is also observed in electrochemical study

    Investigation of complete and incomplete fusion in 7^{7}Li+124^{124}Sn reaction around Coulomb barrier energies

    Full text link
    The complete and incomplete fusion cross sections for 7^{7}Li+124^{124}Sn reaction were measured using online and offline characteristic γ\gamma-ray detection techniques. The complete fusion (CF) cross sections at energies above the Coulomb barrier were found to be suppressed by \sim 26 \% compared to the coupled channel calculations. This suppression observed in complete fusion cross sections is found to be commensurate with the measured total incomplete fusion (ICF) cross sections. There is a distinct feature observed in the ICF cross sections, i.e., t\textit{t}-capture is found to be dominant than α\alpha-capture at all the measured energies. A simultaneous explanation of complete, incomplete and total fusion (TF) data was also obtained from the calculations based on Continuum Discretized Coupled Channel method with short range imaginary potentials. The cross section ratios of CF/TF and ICF/TF obtained from the data as well as the calculations showed the dominance of ICF at below barrier energies and CF at above barrier energies.Comment: 9 pages, 8 figure

    Role of the cluster structure of 7^7Li in the dynamics of fragment capture

    Full text link
    Exclusive measurements of prompt γ\gamma-rays from the heavy-residues with various light charged particles in the 7^7Li + 198^{198}Pt system, at an energy near the Coulomb barrier (E/VbV_b \sim 1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, α\alpha and tt capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two step process, breakup followed by fusion in case of the capture of tt and α\alpha clusters; whereas for 6^{6}He + pp and 5^{5}He + dd configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of 7^7Li in understanding the reaction dynamics at energies around the Coulomb barrier.Comment: 6 pages, 4 figures, Accepted for publication in Phys. Letts.

    Fresnel zone plate telescopes for X-ray imaging II: numerical simulations with parallel and diverging beams

    Full text link
    We present the results of simulations of shadows cast by a zone plate telescope which may have one to four pairs of zone plates. From the shadows we reconstruct the images under various circumstances. We discuss physical basis of the resolution of the telescope and demonstrate this by our simulations. We allow the source to be at a finite distance (diverging beam) as well as at an infinite distance (parallel beam) and show that the resolution is worsened when the source is nearby. By reconstructing the zone plates in a way that both the zone plates subtend the same solid angles at the source, we obtain back high resolution even for sources at a finite distance. We present simulated results for the observation of the galactic center and show that the sources of varying intensities may be reconstructed with accuracy. Results of these simulations would be of immense use in interpreting the X-ray images from recently launched CORONAS-PHOTON satellite.Comment: 17 pages, 36 figures, Published in Experimental Astronom

    Fusion of 6^{6}Li with 159^{159}Tb} at near barrier energies

    Full text link
    Complete and incomplete fusion cross sections for 6^{6}Li+159^{159}Tb have been measured at energies around the Coulomb barrier by the γ\gamma-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by \sim34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of 11,10^{11,10}B+159^{159}Tb and 7^{7}Li+159^{159}Tb shows that the extent of suppression is correlated with the α\alpha-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction 6^{6}Li+159^{159}Tb, at below-barrier energies are primarily due to the dd-transfer to unbound states of 159^{159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.Comment: Phys. Rev. C (accepted

    In-beam spectroscopy of medium- and high-spin states in 133^{133}Ce

    Full text link
    Medium and high-spin states in 133^{133}Ce were investigated using the 116^{116}Cd(22^{22}Ne, 5n5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of 22.8\sim22.8 MeV and spin 93/2 . Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that all observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus.Comment: 20 pages, 11 figure

    Small Quadrupole Deformation for the Dipole Bands in 112In

    Full text link
    High spin states in 112^{112}In were investigated using 100^{100}Mo(16^{16}O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin \sim 20\hbar with the level scheme showing three dipole bands. The polarization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.Comment: 10 pages, 11 figures, 2 table
    corecore