31 research outputs found

    Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes.

    Get PDF
    Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with "Huntington's Disease Signaling" identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets

    High Throughput Interrogation of Somatic Mutations in High Grade Serous Cancer of the Ovary

    Get PDF
    BACKGROUND:Epithelial ovarian cancer is the most lethal of all gynecologic malignancies, and high grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. The objective of this study was to determine the frequency and types of point somatic mutations in HGSC using a mutation detection protocol called OncoMap that employs mass spectrometric-based genotyping technology. METHODOLOGY/PRINCIPAL FINDINGS:The Center for Cancer Genome Discovery (CCGD) Program at the Dana-Farber Cancer Institute (DFCI) has adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. The mutation detection protocol, termed OncoMap has been expanded to detect more than 1000 mutations in 112 oncogenes in formalin-fixed paraffin-embedded (FFPE) tissue samples. We performed OncoMap on a set of 203 FFPE advanced staged HGSC specimens. We isolated genomic DNA from these samples, and after a battery of quality assurance tests, ran each of these samples on the OncoMap v3 platform. 56% (113/203) tumor samples harbored candidate mutations. Sixty-five samples had single mutations (32%) while the remaining samples had ≥ 2 mutations (24%). 196 candidate mutation calls were made in 50 genes. The most common somatic oncogene mutations were found in EGFR, KRAS, PDGRFα, KIT, and PIK3CA. Other mutations found in additional genes were found at lower frequencies (<3%). CONCLUSIONS/SIGNIFICANCE:Sequenom analysis using OncoMap on DNA extracted from FFPE ovarian cancer samples is feasible and leads to the detection of potentially druggable mutations. Screening HGSC for somatic mutations in oncogenes may lead to additional therapies for this patient population

    DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest

    No full text
    p53 and p73 genes are both activated in response to DNA damage to induce either cell cycle arrest or apoptosis, depending on the strength and the quality of the damaging stimulus. p53/p73 transcriptional activity must be tightly regulated to ensure that the appropriate biological response is achieved and to allow the cell to re-enter into the cell cycle after the damage has been repaired. In addition to multiple transcriptionally active (TA) isoforms, dominant negative (DN) variants, that lack the amino-terminal transactivation domain and function as trans-repressors of p53, p63 and p73, are expressed from a second internal promoter (P2-p73Pr). Here we show that, in response to a non apoptotic DNA damage induced by low doses of doxorubicin, p53 binds in vivo, as detected by a p53-specific chromatin immunoprecipitation assay, and activates the P2-p73 promoter. DN-p73alpha protein accumulates under the same conditions and exogenously expressed DN-p73alpha is able to counteract the p53-induced activation of the P2-p73Pr. These results suggest that DN-p73 may contribute to the autoregulatory loops responsible for the termination of p53/p73 responses in cells that do not undergo apoptosis. Accordingly, the activation of the P2-p73Pr is markedly enhanced in both p73-/- murine fibroblasts and in human cells in which p73 transcripts are selectively knocked-out by p73-specific small interfering RNAs

    High Throughput Mass Spectrometry-Based Mutation Profiling of Primary Uveal Melanoma

    No full text
    PURPOSE. We assessed for mutations in a large number of oncogenes and tumor suppressor genes in primary uveal melanomas using a high-throughput profiling system. METHODS. DNA was extracted and purified from 134 tissue samples from fresh-frozen tissues (n = 87) or formalin-fixed, paraffin-embedded tissues (n = 47) from 124 large uveal melanomas that underwent primary treatment by enucleation. DNA was subjected to whole genome amplification and MALDI-TOF mass spectrometry-based mutation profiling (>1000 mutations tested across 120 oncogenes and tumor suppressor genes) using the OncoMap3 platform. All candidate mutations, as well as commonly occurring mutations in GNAQ and GNA11, were validated using homogeneous mass extension (hME) technology. RESULTS. Of 123 samples, 97 (79%, representing 89 unique tumors) were amplified successfully, passed all quality control steps, and were assayed with the OncoMap platform. A total of 58 mutation calls was made for 49 different mutations across 26 different genes in 34/98 (35%) samples. Of 91 tumors that underwent hME validation, 83 (91%) harbored mutations in the GNAQ (47%) or GNA11 (44%) genes, while hME validation revealed two tumors with mutations in EGFR. These additional mutations occurred in tumors that also had mutations in GNAQ or GNA11. CONCLUSIONS. The vast majority of primary large uveal melanomas harbor mutually-exclusive mutations in GNAQ or GNA11, but very rarely have the oncogenic mutations that are reported commonly in other cancers. When present, these other mutations were found in conjunction with GNAQ/GNA11 mutations, suggesting that these other mutations likely are not the primary drivers of oncogenesis in uveal melanoma
    corecore