14 research outputs found

    Orbital Dynamics of Binary Boson Star Systems

    Full text link
    We extend our previous studies of head-on collisions of boson stars by considering orbiting binary boson stars. We concentrate on equal mass binaries and study the dynamical behavior of boson/boson and boson/antiboson pairs. We examine the gravitational wave output of these binaries and compare with other compact binaries. Such a comparison lets us probe the apparent simplicity observed in gravitational waves produced by black hole binary systems. In our system of interest however, there is an additional internal freedom which plays a significant role in the system's dynamics, namely the phase of each star. Our evolutions show rather simple behavior at early times, but large differences occur at late times for the various initial configurations.Comment: 10 pages, 14 figure

    Boosting jet power in black hole spacetimes

    Full text link
    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure

    Head-on collisions of boson stars

    Full text link
    We study head-on collisions of boson stars in three dimensions. We consider evolutions of two boson stars which may differ in their phase or have opposite frequencies but are otherwise identical. Our studies show that these phase differences result in different late time behavior and gravitational wave output

    Magnetized Neutron-Star Mergers and Gravitational-Wave Signals

    No full text
    We investigate the influence of magnetic fields upon the dynamics of, and resulting gravitational waves from, a binary neutron-star merger in full general relativity coupled to ideal magnetohydrodynamics. We consider two merger scenarios: one where the stars have aligned poloidal magnetic fields and one without. Both mergers result in a strongly differentially rotating object. In comparison to the nonmagnetized scenario, the aligned magnetic fields delay the full merger of the stars. During and after merger we observe phenomena driven by the magnetic field, including Kelvin-Helmholtz instabilities in shear layers, winding of the field lines, and transition from poloidal to toroidal magnetic fields. These effects not only mediate the production of electromagnetic radiation, but also can have a strong influence on the gravitational waves. Thus, there are promising prospects for studying such systems with both types of waves

    Intense Electromagnetic Outbursts from Collapsing Hypermassive Neutron Stars

    Full text link
    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and non-rotating stellar collapse scenarios, and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The non-rotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the non-linear time-evolution of force-free fluids. In both the rotating and non-rotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient. In the case of sub-millisecond rotation, the magnetic field experiences strong winding and the transient carries much more energy. This result has important implications for models of gamma-ray bursts.Comment: 28 pages, 20 figures (quality lowered to reduce sizes). Improved initial data and matching condition results in a lower, but still important, energy emission. Added appendix with a discussion on effects of transition laye

    Evolutions of Magnetized and Rotating Neutron Stars

    Full text link
    We study the evolution of magnetized and rigidly rotating neutron stars within a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions. The stars are modeled as rotating, magnetized polytropic stars and we examine diverse scenarios to study their dynamics and stability properties. In particular we concentrate on the stability of the stars and possible critical behavior. In addition to their intrinsic physical significance, we use these evolutions as further tests of our implementation which incorporates new developments to handle magnetized systems.Comment: 12 pages, 8 figure

    Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models

    Full text link
    We consider the evolution in full general relativity of a family of linearly unstable isolated spherical neutron stars under the effects of very small, perturbations as induced by the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits a type-I critical behaviour, thus confirming the conclusions reached by Liebling et al. [1] for rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out a more in-depth study providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation of the putative critical solution as a spherical solution with the unstable mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical solution will distinguish the set of subcritical models migrating to the stable branch of the models of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how the dynamics changes when the numerically perturbation is replaced by a finite-size, resolution independent velocity perturbation and show that in such cases a nearly-critical solution can be changed into either a sub or supercritical. The work reported here also lays the basis for the analysis carried in a companion paper, where the critical behaviour in the the head-on collision of two neutron stars is instead considered [2].Comment: 15 pages, 9 figure

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇⋅B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    On the Use of Multipole Expansion in Time Evolution of Non-linear Dynamical Systems and Some Surprises Related to Superradiance

    Full text link
    A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process, or its field theoretical correspondence---superradiance---does play crucial role in jet formation in black hole spacetimes while matter accretes onto the central object. Our findings appear to be on contrary to these claims as the angular dependence of a to be superradiant scattering of a massless scalar field does not show any preference of the axis of rotation. In addition, the process of superradiance, in case of a massless scalar field, was also investigated. On contrary to the general expectations no energy extraction from black hole was found even though the incident wave packets was fine tuned to be maximally superradiant. Instead of energy extraction the to be superradiant part of the incident wave packet fails to reach the ergoregion rather it suffers a total reflection which appears to be a new phenomenon.Comment: 49 pages, 11 figure
    corecore