626 research outputs found

    Short note on magnetic impurities in SmFeAsO1x_{1-x}Fx_x (x=0, 0.07) compounds revealed by zero-field 75^{75}As NMR

    Full text link
    We have performed zero-field 75^{75}As nuclear magnetic resonance study of SmFeAsO1x_{1-x}Fx_x (x=0, 0.07) polycrystals in a wide frequency range at various temperatures. 75^{75}As resonance line was found at around 265 MHz revealing the formation of the intermetallic FeAs clusters in the new layered superconductors. We have also demonstrated that NMR is a sensitive tool for probing the quality of these materials.Comment: Revised authorshi

    Tetragonal to orthorhombic phase transition in SmFeAsO: a synchrotron powder diffraction investigation

    Full text link
    The crystal structure of SmFeAsO has been investigated by means of Rietveld refinement of high resolution synchrotron powder diffraction data collected at 300 K and 100 K. The compound crystallizes in the tetragonal P4/nmm space group at 300 K and in the orthorhombic Cmma space group at 100 K; attempts to refine the low temperature data in the monoclinic P112/n space group diverged. On the basis of both resistive and magnetic analyses the tetragonal to orthorhombic phase transition can be located at T about 140 K.Comment: Submitted to: Superconductor Science and Technology PACS: 61.05.cp, 61.66.Fn, 74.10.+v, 74.62.Dh, 74.70.D

    Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study

    Full text link
    19^{19}F NMR measurements in SmFeAsO1x_{1-x}Fx_x, for 0.15x0.20.15\leq x\leq 0.2, are presented. The nuclear spin-lattice relaxation rate 1/T11/T_1 increases upon cooling with a trend analogous to the one already observed in CeCu5.2_{5.2}Au0.8_{0.8}, a quasi two-dimensional heavy-fermion intermetallic compound with an antiferromagnetic ground-state. In particular, the behaviour of the relaxation rate either in SmFeAsO1x_{1-x}Fx_x or in CeCu5.2_{5.2}Au0.8_{0.8} can be described in the framework of the self-consistent renormalization theory for weakly itinerant electron systems. Remarkably, no effect of the superconducting transition on 19^{19}F 1/T11/T_1 is detected, a phenomenon which can hardly be explained within a single band model.Comment: 4 figure

    Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides

    Full text link
    In this work we study the effect of the rare earth element in iron oxypnictides of composition REFeAsO (RE=rare earth). On one hand we carry out Density Functional Theory calculations of the band structure, which evidence the multiband character of these compounds and the presence of Dirac cones along the Y-{\Gamma} and Z-R directions of the reciprocal space. On the other hand, we explore transport behavior by means of resistivity, Hall resistance and magnetoresistance measurements, which confirm the dominant role of Dirac cones. By combining our theoretical and experimental approaches, we extract information on effective masses, scattering rates and Fermi velocities for different rare earth elements.Comment: 13 pages, 5 figures accepted for publication on European Journal of Physics

    Theoretical search for superconductivity in Sc3XB perovskites and weak ferromagnetism in Sc3X (X = Tl, In, Ga, Al)

    Full text link
    A possibility for a new family of intermetallic perovskite superconductors Sc3XB, with X = Tl, In, Ga and Al, is presented as a result of KKR electronic structure and pseudopotential phonon calculations. The large values of computed McMillan--Hopfield parameters on scandium suggest appearance of superconductivity in Sc3XB compounds. On the other hand, the possibility of weak itinerant ferromagnetic behavior of Sc3X systems is indicated by the small magnetic moment on Sc atoms in two cases of X =~ l and In. Also the electronic structure and resulting superconducting parameters for more realistic case of boron--deficient systems Sc3XB_x are computed using KKR--CPA method, by replacing boron atom with a vacancy. The comparison of the calculated McMillan--Hopfield parameters of the Sc3XB series with corresponding values in MgCNi3 and YRh3B superconductors is given, finding the favorable trends for superconductivity.Comment: 13 pages, 13 figures. v3 - revise

    Critical Field of MGB2 : Crossover from Clean to Dirty Regimes

    Full text link
    We have studied the upper critical field, Bc2, in poly-crystalline MgB2 samples in which disorder was varied in a controlled way to carry selectively p and s bands from clean to dirty limit. We have found that the clean regime survives when p bands are dirty and s bands are midway between clean and dirty. In this framework we can explain the anomalous behaviour of Al doped samples, in which Bc2 decreases as doping increases.Comment: 11 pages, 2 figure

    Significant enhancement of irreversibility field in clean-limit bulk MgB2

    Full text link
    Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a factor of 2 in both transport and magnetic measurements. The best sample displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm and a lowering of the resistivity ratio from 15 to 3, while the critical temperature Tc decreased by only 1-2 K. These results point the way to make prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter

    Tuning topological disorder in MgB2_{2}

    Full text link
    We carried out Raman measurements on neutron-irradiated and Al-doped MgB2_2 samples. The irradiation-induced topological disorder causes an unexpected appearance of high frequency spectral structures, similar to those observed in lightly Al-doped samples. Our results show that disorder-induced violations of the selection rules are responsible for the modification of the Raman spectrum in both irradiated and Al-doped samples. Theoretical calculations of the phonon density of states support this hypothesis, and demonstrate that the high frequency structures arise mostly from contributions at q0{\bf q}\not=0 of the E2g_{2g} phonon mode.Comment: 4 pages, 4 figure
    corecore