50 research outputs found

    Structural and mechanistic basis for a new mode of glycosyltransferase inhibition

    No full text
    Glycosyltransferases are carbohydrate-active enzymes with essential roles in numerous important biological processes. We have developed a novel donor analogue for galactosyltransferases which locks a representative target enzyme in a catalytically inactive conformation, thus almost completely abolishing sugar transfer. Results with other galactosyltransferases suggest that this novel and unique mode of glycosyltransferase inhibition is, very likely, generally applicable to other members of this very important enzyme family also

    Glycoscience finally comes of age

    No full text
    To take its place alongside genomics and proteomics, glycoscience needs recognition from scientist

    Inhibition of galactosyltransferases by a novel class of donor analogues

    No full text
    Galactosyltransferases (GalT) are important molecular targets in a range of therapeutic areas, including infection, inflammation, and cancer. GalT inhibitors are therefore sought after as potential lead compounds for drug discovery. We have recently discovered a new class of GalT inhibitors with a novel mode of action. In this publication, we describe a series of analogues which provide insights, for the first time, into SAR for this new mode of GalT inhibition. We also report that a new C-glycoside, designed as a chemically stable analogue of the most potent inhibitor in this series, retains inhibitory activity against a panel of GalTs. Initial results from cellular studies suggest that despite their polarity, these sugar-nucleotides are taken up by HL-60 cells. Results from molecular modeling studies with a representative bacterial GalT provide a rationale for the differences in bioactivity observed in this series. These findings may provide a blueprint for the rational development of new GalT inhibitors with improved potency.Peer reviewed: YesNRC publication: Ye

    One-pot enzymatic synthesis of the Gal alpha 1-->3Gal beta 1-->4GlcNAc sequence with in situ UDP-Gal regeneration.

    Full text link
    The trisaccharide Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was enzymatically synthesized, with in situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4'-epimerase, UDP-Gal:GlcNAc beta 4-galactosyltransferase and UDP-Gal:Gal beta 1-->4GlcNAc alpha 3-galactosyltransferase, Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was formed in a 2.2 mumol ml-1 yield starting from the acceptor GlcNAc beta 1-->O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal alpha 1-->3Gal beta 1-->4GlcNAc epitope which pays an important role in various biological and immunological processes
    corecore