90 research outputs found

    Transmission of cultural traits in layered ego-centric networks

    Full text link
    Although a number of models have been developed to investigate the emergence of culture and evolutionary phases in social systems, one important aspect has not yet been sufficiently emphasized. This is the structure of the underlaying network of social relations serving as channels in transmitting cultural traits, which is expected to play a crucial role in the evolutionary processes in social systems. In this paper we contribute to the understanding of the role of the network structure by developing a layered ego-centric network structure based model, inspired by the social brain hypothesis, to study transmission of cultural traits and their evolution in social network. For this model we first find analytical results in the spirit of mean-field approximation and then to validate the results we compare them with the results of extensive numerical simulations.Comment: 10 pages, 2 figure

    Scaling in public transport networks

    Full text link
    We analyse the statistical properties of public transport networks. These networks are defined by a set of public transport routes (bus lines) and the stations serviced by these. For larger networks these appear to possess a scale-free structure, as it is demonstrated e.g. by the Zipf law distribution of the number of routes servicing a given station or for the distribution of the number of stations which can be visited from the chosen one without changing the means of transport. Moreover, a rather particular feature of the public transport network is that many routes service common subsets of stations. We discuss the possibility of new scaling laws that govern intrinsic features of such subsets.Comment: 9 pages, 4 figure

    Ground truth? Concept-based communities versus the external classification of physics manuscripts

    Full text link
    Community detection techniques are widely used to infer hidden structures within interconnected systems. Despite demonstrating high accuracy on benchmarks, they reproduce the external classification for many real-world systems with a significant level of discrepancy. A widely accepted reason behind such outcome is the unavoidable loss of non-topological information (such as node attributes) encountered when the original complex system is represented as a network. In this article we emphasize that the observed discrepancies may also be caused by a different reason: the external classification itself. For this end we use scientific publication data which i) exhibit a well defined modular structure and ii) hold an expert-made classification of research articles. Having represented the articles and the extracted scientific concepts both as a bipartite network and as its unipartite projection, we applied modularity optimization to uncover the inner thematic structure. The resulting clusters are shown to partly reflect the author-made classification, although some significant discrepancies are observed. A detailed analysis of these discrepancies shows that they carry essential information about the system, mainly related to the use of similar techniques and methods across different (sub)disciplines, that is otherwise omitted when only the external classification is considered.Comment: 15 pages, 2 figure

    Entropic equation of state and scaling functions near the critical point in scale-free networks

    Get PDF
    We analyze the entropic equation of state for a many-particle interacting system in a scale-free network. The analysis is performed in terms of scaling functions which are of fundamental interest in the theory of critical phenomena and have previously been theoretically and experimentally explored in the context of various magnetic, fluid, and superconducting systems in two and three dimensions. Here, we obtain general scaling functions for the entropy, the constant-field heat capacity, and the isothermal magnetocaloric coefficient near the critical point in scale-free networks, where the node-degree distribution exponent λ\lambda appears to be a global variable and plays a crucial role, similar to the dimensionality dd for systems on lattices. This extends the principle of universality to systems on scale-free networks and allows quantification of the impact of fluctuations in the network structure on critical behavior.Comment: 8 pages, 4 figure

    Sex differences in intimate relationships

    Get PDF
    Social networks have turned out to be of fundamental importance both for our understanding human sociality and for the design of digital communication technology. However, social networks are themselves based on dyadic relationships and we have little understanding of the dynamics of close relationships and how these change over time. Evolutionary theory suggests that, even in monogamous mating systems, the pattern of investment in close relationships should vary across the lifespan when post-weaning investment plays an important role in maximising fitness. Mobile phone data sets provide us with a unique window into the structure of relationships and the way these change across the lifespan. We here use data from a large national mobile phone dataset to demonstrate striking sex differences in the pattern in the gender-bias of preferred relationships that reflect the way the reproductive investment strategies of the two sexes change across the lifespan: these differences mainly reflect women's shifting patterns of investment in reproduction and parental care. These results suggest that human social strategies may have more complex dynamics than we have tended to assume and a life-history perspective may be crucial for understanding them.Comment: 5 pages, 3 figures, contains electronic supplementary materia
    corecore