65 research outputs found
Transgene Silencing and Transgene-Derived siRNA Production in Tobacco Plants Homozygous for an Introduced AtMYB90 Construct
Transgenic tobacco (Nicotiana tabacum) lines were engineered to ectopically over-express AtMYB90 (PAP2), an R2–R3 Myb gene associated with regulation of anthocyanin production in Arabidopsis thaliana. Independently transformed transgenic lines, Myb27 and Myb237, accumulated large quantities of anthocyanin, generating a dark purple phenotype in nearly all tissues. After self-fertilization, some progeny of the Myb27 line displayed an unexpected pigmentation pattern, with most leaves displaying large sectors of dramatically reduced anthocyanin production. The green-sectored 27Hmo plants were all found to be homozygous for the transgene and, despite a doubled transgene dosage, to have reduced levels of AtMYB90 mRNA. The observed reduction in anthocyanin pigmentation and AtMYB90 mRNA was phenotypically identical to the patterns seen in leaves systemically silenced for the AtMYB90 transgene, and was associated with the presence of AtMYB90-derived siRNA homologous to both strands of a portion of the AtMYB90 transcribed region. Activation of transgene silencing in the Myb27 line was triggered when the 35S::AtMYB90 transgene dosage was doubled, in both Myb27 homozygotes, and in plants containing one copy of each of the independently segregating Myb27 and Myb237 transgene loci. Mapping of sequenced siRNA molecules to the Myb27 TDNA (including flanking tobacco sequences) indicated that the 3′ half of the AtMYB90 transcript is the primary target for siRNA associated silencing in both homozygous Myb27 plants and in systemically silenced tissues. The transgene within the Myb27 line was found to consist of a single, fully intact, copy of the AtMYB90 construct. Silencing appears to initiate in response to elevated levels of transgene mRNA (or an aberrant product thereof) present within a subset of leaf cells, followed by spread of the resulting small RNA to adjacent leaf tissues and subsequent amplification of siRNA production
Graft-Transmitted siRNA Signal from the Root Induces Visual Manifestation of Endogenous Post-Transcriptional Gene Silencing in the Scion
In plants, post-transcriptional gene silencing (PTGS) spreads systemically, being transmitted from the silenced stock to the scion expressing the corresponding transgene. It has been reported that a graft-transmitted siRNA signal can also induce PTGS of an endogenous gene, but this was done by top-grafting using silenced stock. In the present study involving grafting of Nicotiana benthamiana, we found that PTGS of an endogenous gene, glutamate-1-semialdehyde aminotransferase (GSA), which acts as a visible marker of RNAi via inhibition of chlorophyll synthesis, was manifested along the veins of newly developed leaves in the wild-type scion by the siRNA signal synthesized only in companion cells of the rootstock
NOF1 Encodes an Arabidopsis Protein Involved in the Control of rRNA Expression
The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life's cycle, and preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of which may be conserved in eukaryotes
A Transcriptionally Active State Is Required for Post-Transcriptional Silencing (Cosuppression) of Nitrate Reductase Host Genes and Transgenes.
Using tobacco nitrate reductase cosuppression as a model system of post-transcriptional gene silencing, we analyzed the influence of DNA and RNA dosages both together and independently. For this purpose, zero, one, two, or four active or transcriptionally silenced copies of a cauliflower mosaic virus 35S-Nia2 transgene were combined by transformation and subsequent crosses with zero, one, two, three, or four active, disrupted, or transcriptionally repressed copies of the wild-type host Nia genes. The analysis of the corresponding transgenic lines revealed that (1) the percentage of isogenic plants that are affected by cosuppression depends directly upon the relative dosage of both host gene and transgene; (2) transcriptional silencing of the 35S-Nia transgene impedes cosuppression; and (3) the absence of host gene transcription reduces the frequency of cosuppression or delays its triggering. Taken together, these results indicate that transgene DNA per se is not sufficient to trigger post-transcriptional cosuppression of nitrate reductase host genes and transgenes. The requirement for a transcriptionally active state is discussed with respect to both the RNA dosage and the DNA-DNA pairing hypotheses
Frequencies, Timing, and Spatial Patterns of Co-Suppression of Nitrate Reductase and Nitrite Reductase in Transgenic Tobacco Plants.
Frequencies, timing, and spatial patterns of co-suppression of the nitrate (Nia) and nitrite (Nii) genes were analyzed in transgenic tobacco (Nicotiana tabacum) plants carrying either Nia or Nii cDNAs under the control of the 35S promoter, or a Nii gene with its own regulatory signals (promoter, introns, and terminator) cloned downstream of two copies of the enhancer of the 35S promoter. We show that (a) the frequencies of transgenic lines affected by co- suppression are similar for the three constructs, ranging from 19 to 25%; (b) Nia and Nii co-suppression are triggered stochastically during a phenocritical period of 2 weeks between germination and flowering; (c) the timing of co-suppression (i.e. the percentage of isogenic plants affected by co-suppression reported as a function of the number of days of culture) differs from one transgenic line to another; (d) the percentage of isogenic plants affected by co-suppression is increased by growing the plants in vitro prior to their transfer to the greenhouse and to the field; and (e) at the end of the culture period, plants are either unaffected, completely co-suppressed, or variegated. Suppressed and nonsuppressed parts of these variegated plants are separated by a vertical plane through the stem in Nia co-suppression, and separated by a horizontal plane in Nii co-suppression
Alterations in sphingolipid synthesis in the model plant Arabidopsis thaliana is associated with cell polarity and developmental defects
International audienc
Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana
International audienceAcyl chain length is thought to be crucial for biophysical properties of the membrane, in particular during cell division, when active vesicular fusion is necessary. In higher plants, the process of cytokinesis is unique, because the separation of the two daughter cells is carried out by de novo vesicular fusion to generate a laterally expanding cell plate. In Arabidopsis thaliana, very-long-chain fatty acid (VLCFA) depletion caused by a mutation in the microsomal elongase gene PASTICCINO2 (PAS2) or by application of the selective elongase inhibitor flufenacet altered cytokinesis. Cell plate expansion was delayed and the formation of the endomembrane tubular network altered. These defects were associated with specific aggregation of the cell plate markers YFP-Rab-A2a and KNOLLE during cytokinesis. Changes in levels of VLCFA also resulted in modification of endocytosis and sensitivity to brefeldin A. Finally, the cytokinesis impairment in pas2 cells was associated with reduced levels of very long fatty acyl chains in phospholipids. Together, our findings demonstrate that VLCFA-containing lipids are essential for endomembrane dynamics during cytokinesis
- …