871 research outputs found

    Effects of vertical vibration on hopper flows of granular material

    Get PDF
    The discharge of granular material from a hopper subject to vertical sinusoidal oscillations was investigated using experiments and discrete element computer simulations. With the hopper exit closed, side-wall convection cells are observed, oriented such that particles move up along the inclined walls of the hopper and down at the center line. The convection cells are a result of the granular bed dilation during free fall and the subsequent interaction with the hopper walls. The mass discharge rate for a vibrating hopper scaled by the discharge rate without vibration reaches a maximum value at a dimensionless velocity amplitude just greater than 1. Further increases in the velocity decrease the discharge rate. The decrease occurs due to a decrease in the bulk density of the discharging material when vibration is applied

    Family Reunification among Two Groups of Runaway Adolescents Utilizing Emergency Shelters

    Get PDF
    Limited research has addressed reunification of runaway youths with their families following an emergency shelter stay; however, recent studies have shown that those who reunify with their families following a shelter stay have more positive outcomes than those relocated to other residences. This study evaluated differences between two samples of runaway youth utilizing youth emergency shelters in New York (n = 155) and Texas (n = 195) and identified factors associated with reunification among these two groups of adolescents. Less than half (43.7%) of the youths were reunited with their families. Among New York runaway youths, those who had lived primarily with someone other than a parent before shelter admission, were physically abused, or neglected were less likely to return home. Among youths admitted to emergency shelter services in Texas, those with longer shelter stays, living primarily with someone other than a parent before shelter admission, or being pregnant or a parent were less likely to reunify. This study provides valuable information concerning family reunification following shelter service use; however, additional research is needed to delineate youth, family, and shelter system factors that distinguish successful from unsuccessful reunification over an extended period of time

    Using Proanthocyanidin as a Root Dentin Conditioner for GIC Restorations

    Get PDF
    Glass ionomer cements (GICs) are considered the material of choice for restoration of root carious lesions (RCLs). When bonding to demineralized dentin, the collapse of dentinal collagen during restorative treatment may pose challenges. Considering its acidic nature and collagen biomodification effects, proanthocyanidin (PAC) could be potentially used as a dentin conditioner to remove the smear layer while simultaneously acting to biomodify the dentinal collagen involved in the bonding interface. In this study, 6.5% w/v PAC was used as a conditioner for sound (SD) and laboratory demineralized (DD) root dentin before bonding to resin-modified GIC (FII), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified GIC (FVII), or a high-viscosity GIC (FIX). Root dentin conditioned with deionized distilled water (DDW) or polyacrylic acid (PAA) served as controls. Results indicated FII showed higher shear bond strength (SBS) on SD than the other 2 GICs, especially in PAA-conditioned samples; FIX showed significantly higher SBS than FII and FVII on PAA- or PAC-conditioned DD. In each category of GIC, PAA and PAC did not have a significant influence on SBS in most cases compared to DDW except for a significant decrease in PAC-conditioned SD bonded to FII and a significant increase in PAA-conditioned DD bonded to FIX. The bonding interface between GIC and SD was generally more resistant to the acid-base challenge than DD. Although the alterations in failure modes indicated a compromised interfacial interaction between GICs and PAC-treated root dentin, biomodification effects of PAC on dentin were observed from Raman microspectroscopy analysis in terms of the changes in mineral-to-matrix ratio and hydroxyproline-to-proline ratio of dentin adjacent to the bonding interface, especially of DD. Results from this study also indicated the possibility of using in situ characterization such as Raman microspectroscopy as a complementary approach to SBS test to investigate the integrity of the bonding interface

    The Effect on the Ultrastructure of Dental Enamel of Excimer-Dye, Argon-Ion and CO2 Lasers

    Get PDF
    This study aimed to investigate the ultrastructural changes that occur in dental enamel irradiated with pulsed excimer-dye, continuous-wave (CW) argon-ion and CW CO2 lasers. The pulsed excimer-dye laser produced deep craters, rough damaged surfaces with underlying porosity and amorphous vitrified material. The vitrification of the enamel indicated that the temperature in these areas must have been al least in the range 1280 to 1600°C. The CW argon-ion laser irradiation produced a changed non-cratered surface with inter-crystalline porosity and a mixture of small and some large irregularly packed recrystallized enamel crystals. The CW CO2 laser produced shallow craters, surface crazing and lifting off and removal of the surface layer to expose the underlying roughened enamel. T he ultrastructure revealed inter-and intra-crystalline porosity, a mixture of small but variable size irregularly packed recrystallized enamel crystals and also well packed large crystals which indicated further grain growth. The porosity in lased enamel was overall very similar to that seen in enamel heated in an electric furnace to a temperature of 600°C. The presence of recrystallized enamel crystals indicated a temperature rise of ~1000°C and the grain growth indicated that a temperature 2: 1000°C existed for some time after the laser irradiation. In general the excimer-dye laser produced most surface destruction because of its higher power density and shorter interaction time and the argon-ion laser produced least damage. These results indicated that the lasers used in this study require much more refinement before they can find therapeutic application to dental enamel, and this may well be the case for other lasers being investigated for clinical dental practise

    Remineralising effects of fluoride varnishes containing calcium phosphate on artificial root caries lesions with adjunctive application of proanthocyanidin

    Get PDF
    Objectives: To evaluate the remineralising effects of fluoride (F) varnishes containing bioavailable calcium-phosphate compound (Ca-P) based remineralisation systems and 5000 ppm F toothpaste (FTP) on root caries lesions (RCLs) and the potential effects of proanthocyanidin (PA) for the treatments of RCLs when used as an adjunct to F regimens. Methods: Demineralised root dentine and a pH-cycling model were used to mimic RCLs and the oral environment. Remineralising effects of MI VarnishTM (MIV) containing casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) and Clinpro™ White Varnish (CPWV) containing tri-calcium phosphate (TCP) along with FTP and PA were evaluated regarding the birefringence, elemental composition, mechanical properties and mineral density of remineralised dentine with DuraphatTM as a comparison. Results: MIV, CPWV and DuraphatTM promoted the incorporation of F into RCLs and increased mineral density but did not change microhardness of root dentine significantly. Surface microhardness increased significantly when MIV or CPWV was used with 5000 ppm FTP. Application of PA with F regimens significantly increased subsurface mineral density. When PA was applied with MIV or CPWV along with FTP, the highest ion uptake and relative mineral gain (%ΔZ) was achieved, and significant increase of microhardness was up to 30 μm depth. Generally, MIV was associated with a higher mineral content gain than CPWV. Significance: Treatment of carious root surfaces remains challenging due to the complex pathological processes and difficulty in restoring the highly organised structure of root dentine. Treatment strategies targeting both remineralisation and preservation of the dentinal organic matrix have the potential to improve the fluoride-mediated remineralisation approaches

    The Clustering of Extremely Red Objects

    Get PDF
    We measure the clustering of Extremely Red Objects (EROs) in ~8 deg^2 of the NOAO Deep Wide Field Survey Bo\"otes field in order to establish robust links between ERO z~1.2 and local galaxy z<0.1 populations. Three different color selection criteria from the literature are analyzed to assess the consequences of using different criteria for selecting EROs. Specifically, our samples are (R-K_s)>5.0 (28,724 galaxies), (I-K_s)>4.0 (22,451 galaxies) and (I-[3.6])>5.0 (64,370 galaxies). Magnitude-limited samples show the correlation length (r_0) to increase for more luminous EROs, implying a correlation with stellar mass. We can separate star-forming and passive ERO populations using the (K_s-[24]) and ([3.6]-[24]) colors to K_s=18.4 and [3.6]=17.5, respectively. Star-forming and passive EROs in magnitude limited samples have different clustering properties and host dark halo masses, and cannot be simply understood as a single population. Based on the clustering, we find that bright passive EROs are the likely progenitors of >4L^* elliptical galaxies. Bright EROs with ongoing star formation were found to occupy denser environments than star-forming galaxies in the local Universe, making these the likely progenitors of >L^* local ellipticals. This suggests that the progenitors of massive >4L^* local ellipticals had stopped forming stars by z>1.2, but that the progenitors of less massive ellipticals (down to L^*) can still show significant star formation at this epoch.Comment: 19 pages, 16 figures, 4 tables, Accepted to ApJ 27th November 201

    Incorporation of the microencapsulated antimicrobial agent phytoncide into denture base resin

    Get PDF
    Background This study aimed to fabricate a denture base resin (DBR) containing phytoncide microcapsules (PTMCs) and determine the mechanical properties of the resin and antifungal activity. Methods Fifty‐four heat cured rectangular DBR specimens (64 x 10 x 3.3 ± 0.2 mm) containing nine concentrations of PTMC between 0 ‐ 5% (wt/wt) were fabricated and subjected to a three‐point bending test. A phytoncide release bioassay was developed using DBR containing 0% and 2.5% PTMCs (wt/wt) in a 24 well‐plate assay with incubation of Porphyromonas gingivalis at 37°C for 74 h. The antifungal activity of PTMCs against Candida albicans, in a pH 5.5 acidic environment was determined in a plate assay. Results Flexural strength decreased with increasing PTMC concentration from 97.58 ± 4.79 MPa for the DBR alone to 53.66 ± 2.46 MPa for DBR containing 5.0% PTMC. No release of phytoncide from the PTMCs in the DBR was detected at pH 7.4. The PTMCs had a minimal inhibitory concentration of 2.6% (wt/vol) against C. albicans at pH 5.5. Conclusions PTMCs can be added to DBR 2.5% (wt/wt) without adversely affecting flexural strength. PTMCs released the antimicrobial agent at pH 5.5 at concentrations sufficient to inhibit the growth of the C. albicans

    Electrophysiology Model for a Human Heart with Ischemic Scar and Realistic Purkinje Network

    Get PDF
    The role of Purkinje fibres in the onset of arrhythmias is controversial and computer simulations may shed light on possible arrhythmic mechanisms involving the Purkinje fibres. However, few computational modelling studies currently include a detailed Purkinje network as part of the model. We present a coupled Purkinje-myocardium electrophysiology model that includes an explicit model for the ischemic scar plus a detailed Purkinje network, and compare simulated activation times to those obtained by electro-anatomical mapping in vivo during sinus rhythm pacing. The results illustrate the importance of using sufficiently dense Purkinje networks in patient-specific studies to capture correctly the myocardial early activation that may be influenced by surviving Purkinje fibres in the infarct region
    corecore