614 research outputs found

    Broadband noise decoherence in solid-state complex architectures

    Full text link
    Broadband noise represents a severe limitation towards the implementation of a solid-state quantum information processor. Considering common spectral forms, we propose a classification of noise sources based on the effects produced instead of on their microscopic origin. We illustrate a multi-stage approach to broadband noise which systematically includes only the relevant information on the environment, out of the huge parametrization needed for a microscopic description. We apply this technique to a solid-state two-qubit gate in a fixed coupling implementation scheme.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum Informatio

    Coherent properties of nano-electromechanical systems

    Full text link
    We study the properties of a nano-electromechanical system in the coherent regime, where the electronic and vibrational time scales are of the same order. Employing a master equation approach, we obtain the stationary reduced density matrix retaining the coherences between vibrational states. Depending on the system parameters, two regimes are identified, characterized by either (ii) an {\em effective} thermal state with a temperature {\em lower} than that of the environment or (iiii) strong coherent effects. A marked cooling of the vibrational degree of freedom is observed with a suppression of the vibron Fano factor down to sub-Poissonian values and a reduction of the position and momentum quadratures.Comment: 12 pages, 11 figure

    Auditory gaydar: perception of sexual orientation based on female voice

    Get PDF
    We investigated auditory gaydar (i.e., the ability to recognize sexual orientation) in female speakers, addressing three related issues: whether auditory gaydar is (1) accurate, (2) language-dependent (i.e., occurs only in some languages, but not in others), and (3) ingroup-specific (i.e., occurs only when listeners judge speakers of their own language, but not when they judge foreign language speakers). In three experiments, we asked Italian, Portuguese, and German participants (total N = 466) to listen to voices of Italian, Portuguese, and German women, and to rate their sexual orientation. Our results showed that auditory gaydar was not accurate; listeners were not able to identify speakers’ sexual orientation correctly. The same pattern emerged consistently across all three languages and when listeners rated foreign-language speakers.info:eu-repo/semantics/acceptedVersio

    Decoherence times of universal two-qubit gates in the presence of broad-band noise

    Full text link
    The controlled generation of entangled states of two quantum bits is a fundamental step toward the implementation of a quantum information processor. In nano-devices this operation is counteracted by the solid-state environment, characterized by a broadband and non-monotonic power spectrum, often 1/f at low frequencies. For single-qubit gates, incoherent processes due to fluctuations acting on different time scales result in peculiar short- and long-time behavior. Markovian noise gives rise to exponential decay with relaxation and decoherence times, T1 and T2, simply related to the symmetry of the qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at low frequencies is instead responsible for defocusing processes and algebraic short-time behavior. In this paper, we identify the relevant decoherence times of an entangling operation due to the different decoherence channels originating from solid-state noise. Entanglement is quantified by concurrence, which we evaluate in an analytic form employing a multi-stage approach. The 'optimal' operating conditions of reduced sensitivity to noise sources are identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for experimental noise spectra.Comment: 35 pages, 11 figure

    Superconducting qubit manipulated by fast pulses: experimental observation of distinct decoherence regimes

    Full text link
    A particular superconducting quantum interference device (SQUID)qubit, indicated as double SQUID qubit, can be manipulated by rapidly modifying its potential with the application of fast flux pulses. In this system we observe coherent oscillations exhibiting non-exponential decay, indicating a non trivial decoherence mechanism. Moreover, by tuning the qubit in different conditions (different oscillation frequencies) by changing the pulse height, we observe a crossover between two distinct decoherence regimes and the existence of an "optimal" point where the qubit is only weakly sensitive to intrinsic noise. We find that this behaviour is in agreement with a model considering the decoherence caused essentially by low frequency noise contributions, and discuss the experimental results and possible issues.Comment: 16 pages, 9 figure

    Probiotics as Potential Therapeutic Agents: Safeguarding Skeletal Muscle against Alcohol-Induced Damage through the Gut–Liver–Muscle Axis

    Get PDF
    Probiotics have shown the potential to counteract the loss of muscle mass, reduce physical fatigue, and mitigate inflammatory response following intense exercise, although the mechanisms by which they work are not very clear. The objective of this review is to describe the main harmful effects of alcohol on skeletal muscle and to provide important strategies based on the use of probiotics. The excessive consumption of alcohol is a worldwide problem and has been shown to be crucial in the progression of alcoholic liver disease (ALD), for which, to date, the only therapy available is lifestyle modification, including cessation of drinking. In ALD, alcohol contributes significantly to the loss of skeletal muscle, and also to changes in the intestinal microbiota, which are the basis for a series of problems related to the onset of sarcopenia. Some of the main effects of alcohol on the skeletal muscle are described in this review, with particular emphasis on the “gut-liver-muscle axis”, which seems to be the primary cause of a series of muscle dysfunctions related to the onset of ALD. The modulation of the intestinal microbiota through probiotics utilization has appeared to be crucial in mitigating the muscle damage induced by the high amounts of alcohol consumed

    The molecular gas properties in local Seyfert 2 galaxies

    Get PDF
    Aims. We present a multiwavelength study of the molecular gas properties of a sample of local Seyfert 2 galaxies to assess if, and to what extent, the presence of an active galactic nucleus (AGN) can affect the interstellar medium (ISM) properties in a sample of 33 local Seyfert 2 galaxies. Methods. We compare the molecular gas content (MH2) derived from new and archival low-J CO line measurements of a sample of AGN and a control sample of star-forming galaxies (SFGs). Both the AGN and the control sample are characterized in terms of host-galaxy properties, for example stellar and dust masses (M* and Mdust, respectively) and the star formation rate (SFR). We also investigate the effect of AGN activity on the emission of polycyclic aromatic hydrocarbon (PAH) molecules in the mid-infrared (MIR), a waveband where the dust-reprocessed emission from the obscured AGN contributes the most. Result. The AGN hosted in less massive galaxies (i.e., M* < 1010.5 M⊙; Mdust < 107.5 M⊙) show larger molecular gas contents with respect to SFGs that have the same stellar and dust masses. When comparing their depletion times (tdep ≈ MH2/SFR), AGN show tdep ∼ 0.3-1.0 Gyr, similar to the times observed in the control sample of SFGs. Seyfert 2 galaxies show fainter PAH luminosity the larger the dominance of the nuclear activity in the MIR. Conclusions. We find no clear evidence for a systematic reduction in the molecular gas reservoir at galactic scales in Seyfert galaxies with respect to SFGs. This is in agreement with recent studies that show that molecular gas content is only reduced in sub-kiloparsec-sized regions, where emission from the accreting supermassive black hole dominates. Nonetheless, we show that the impact of AGN activity on the ISM is clearly visible as a suppression of the PAH luminosity

    Coherence correlations in the dissipative two-state system

    Full text link
    We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-reservoir space. We calculate the relevant modified influence functional and present the exact formal expression for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic spectral density with the particular damping strength K=1/2K=1/2, the series is summed in analytic form for all times and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time dynamics in the regime K<1K<1. In general, the coherence correlations decay algebraically as t2Kt^{-2K} at T=0. This implies that the linear static susceptibility diverges for K1/2K\le 1/2 as T0T\to 0, whereas it stays finite for K>1/2K>1/2 in this limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are explained.Comment: 19 pages, 4 figures, to be published in Phys. Rev.
    corecore