46 research outputs found
Exogenous Nitric Oxide and Bubble Formation in Divers
. Purpose: Prevention of bubble formation is a central goal in standard decompression procedures. Previously we have shown that exercise 20 Y 24 h prior to a dive reduces bubble formation and increases survival in rats exposed to a simulated dive. Furthermore, we have demonstrated that nitric oxide (NO) may be involved in this protection; blocking the production of NO increases bubble formation while giving rats a long-lasting NO donor 20 h and immediately prior to a dive reduces bubble formation. This study determined whether a short-lasting NO donor, nitroglycerine, reduced bubble formation after standard dives and decompression in man. Methods: A total of 16 experienced divers were randomly assigned into two groups. One group performed two dives to 30 m of seawater (msw) for 30 min breathing air, and performed exercise at an intensity corresponding to 30% of maximal oxygen uptake during the bottom time. The second group performed two simulated dives to 18 msw for 80 min breathing air in a hyperbaric chamber, and remained sedentary during the bottom period. The first dive for each diver served as the control dive, whereas the divers received 0.4 mg of nitroglycerine by oral spray 30 min before the second dive. Following the dive, gas bubbles in the pulmonary artery were recorded using ultrasound. Results: The open-water dive resulted in significantly more gas bubbles than the dry dive (0.87 T 1.3 vs 0.12 T 0.23 bubbles per square centimeter). Nitroglycerine reduced bubble formation significantly in both dives from 0.87 T 1.3 to 0.32 T 0.7 in the in-water dive and from 0.12 T 0.23 to 0.03 T 0.03 bubbles per square centimeter in the chamber dive. Conclusion: The present study demonstrates that intake of a short-lasting NO donor reduces bubble formation following decompression after different dives
Expression of mitochondrial TSPO and FAM173B is associated with inflammation and symptoms in patients with painful knee osteoarthritis
Objectives
To characterize the expression profiles of two nuclear-encoded mitochondrial genes previously associated with chronic pain, the translocator protein (TSPO) and family with sequence similarity 173B (FAM173B), in different knee compartments from patients with painful knee OA. Also, to examine their association with the joint expression of inflammatory cytokines/chemokines and clinical symptoms.
Methods
The study was performed on 40 knee OA patients and 19 postmortem (PM) controls from which we collected the knee tissues: articular cartilage (AC), synovial membrane (SM) and subchondral bone (SB). Quantitative real-time polymerase chain reaction was used to determine the relative mRNA levels of TSPO, FAM173B, and inflammatory mediators IL6, IL8, IL10, IL12, MCP1, CCL11 and CCL17. OA patients rated their pain intensity (visual analogue scale), severity of knee-related outcomes (KOOS) and pain sensitivity assessed by pressure algometry.
Results
The gene expression of TSPO in SM was elevated in OA patients compared with control subjects while there were no group differences in AC and SB. Expression of FAM173B was reduced in SM but elevated in SB in OA patients compared with controls. The expression of TSPO and FAM173B in SM and SB was associated with the expression of inflammatory substances, but not in AC. Synovial expression of TSPO correlated with lower pain intensity and FAM173B with increased pressure pain sensitivity in OA.
Conclusion
Our results suggest that altered expression of TSPO and FAM173B is associated with joint expression of inflammatory mediators and with clinical symptoms indicating the relevance for the pathophysiology of knee OA
circRNA landscape in dorsal root ganglia from mice with collagen antibody-induced arthritis
Circular RNAs are a novel class of RNA molecules that are covalently closed into a ring structure. They are an epigenetic regulatory mechanism, and their best-studied function is regulation of microRNA activity. As such circular RNAs may be involved in the switch from acute to chronic pain. They have previously been studied in the context of neuropathic pain models, but their importance in inflammation-induced chronic pain models is unexplored. Microarray analysis of dorsal root ganglia collected in the late phase of collagen antibody-induced arthritis (day 59) were used to elucidate the relevance of circular RNAs in the mechanical hypersensitivity caused by this model. 120 circular RNA genes were found to be significantly differentially regulated in female BALB/c mice with collagen antibody-induced arthritis. Six genes were chosen for RT-qPCR analysis in the late (day 54–60) as well as the inflammatory (day 11–12) phase of this model. This validated an increase in circNufip1 expression in the late phase of collagen antibody-induced arthritis. Additionally, it was found that circVps13 and circMicall1 are upregulated in the inflammatory phase. Interestingly, no changes were found in dorsal root ganglia from mice injected with Freund's Complete Adjuvant (day 3) nor mice with spared nerve injury (day 20), despite their similarities to inflammatory and late phase collagen antibody-induced arthritis, respectively. This study provides evidence that mild circular RNA changes occur in dorsal root ganglia of mice with collagen antibody-induced arthritis that are, bioinformatically, predicated to be involved in processes relevant to sensitization
Expression of mitochondrial TSPO and FAM173B is associated with inflammation and symptoms in patients with painful knee osteoarthritis
Objectives: To characterize the expression profiles of two nuclear-encoded mitochondrial genes previously associated with chronic pain, the translocator protein (TSPO) and family with sequence similarity 173B (FAM173B), in different knee compartments from patients with painful knee OA. Also, to examine their association with the joint expression of inflammatory cytokines/chemokines and clinical symptoms. Methods: The study was performed on 40 knee OA patients and 19 postmortem (PM) controls from which we collected the knee tissues: articular cartilage (AC), synovial membrane (SM) and subchondral bone (SB). Quantitative real-time polymerase chain reaction was used to determine the relative mRNA levels of TSPO, FAM173B, and inflammatory mediators IL6, IL8, IL10, IL12, MCP1, CCL11 and CCL17. OA patients rated their pain intensity (visual analogue scale), severity of knee-related outcomes (KOOS) and pain sensitivity assessed by pressure algometry. Results: The gene expression of TSPO in SM was elevated in OA patients compared with control subjects while there were no group differences in AC and SB. Expression of FAM173B was reduced in SM but elevated in SB in OA patients compared with controls. The expression of TSPO and FAM173B in SM and SB was associated with the expression of inflammatory substances, but not in AC. Synovial expression of TSPO correlated with lower pain intensity and FAM173B with increased pressure pain sensitivity in OA. Conclusion: Our results suggest that altered expression of TSPO and FAM173B is associated with joint expression of inflammatory mediators and with clinical symptoms indicating the relevance for the pathophysiology of knee OA
Elevated inflammatory proteins in cerebrospinal fluid from patients with painful knee osteoarthritis are associated with reduced symptom severity
Neuroinflammation and periphery-to-CNS neuroimmune cross-talk in patients with painful knee osteoarthritis (OA) are poorly understood. We utilized proximity extension assay to measure the level of 91 inflammatory proteins in CSF and serum from OA patients and controls. The patients had elevated levels of 48 proteins in CSF indicating neuroinflammation. Ten proteins were correlated between CSF and serum and potentially involved in periphery-to-CNS neuroimmune cross-talk. Seven CSF proteins, all with previously reported neuroprotective effects, were associated with lower pain intensity and milder knee-related symptoms. Our findings indicate that neuroinflammation in OA could be protective and associated with less severe symptoms