13 research outputs found

    Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism

    Full text link
    Palacpac N.M.Q., Ishii K.J., Arisue N., et al. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitology International 99, 102845 (2024); https://doi.org/10.1016/j.parint.2023.102845.The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved

    African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination

    Get PDF
    Arisue N., Palacpac N.M.Q., Ntege E.H., et al. African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination. Frontiers in Cellular and Infection Microbiology 12, 1058081 (2022); https://doi.org/10.3389/fcimb.2022.1058081.BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response

    Assessment of mixed plasmodium falciparum sera5 infection in endemic burkitt lymphoma : A case-control study in Malawi

    Get PDF
    Background: Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. Methods: We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II–IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. Results: Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12–4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11–5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. Conclusions: Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL

    Spontaneous Mutations in the Plasmodium falciparum Sarcoplasmic/ Endoplasmic Reticulum Ca2+-ATPase (PfATP6) Gene among Geographically Widespread Parasite Populations Unexposed to Artemisinin-Based Combination Therapies▿ †

    No full text
    Recent reports on the decline of the efficacy of artemisinin-based combination therapies (ACTs) indicate a serious threat to malaria control. The endoplasmic/sarcoplasmic reticulum Ca2+-ATPase ortholog of Plasmodium falciparum (PfSERCA) has been suggested to be the target of artemisinin and its derivatives. It is assumed that continuous artemisinin pressure will affect polymorphism of the PfSERCA gene (serca) if the protein is the target. Here, we investigated the polymorphism of serca in parasite populations unexposed to ACTs to obtain baseline information for the study of potential artemisinin-driven selection of resistant parasites. Analysis of 656 full-length sequences from 13 parasite populations in Africa, Asia, Oceania, and South America revealed 64 single nucleotide polymorphisms (SNPs), of which 43 were newly identified and 38 resulted in amino acid substitutions. No isolates showed L263E and S769N substitutions, which were reportedly associated with artemisinin resistance. Among the four continents, the number of SNPs was highest in Africa. In Africa, Asia, and Oceania, common SNPs, or those with a minor allele frequency of ≥0.05, were less prevalent, with most SNPs noted to be continent specific, whereas in South America, common SNPs were highly prevalent and often shared with those in Africa. Of 50 amino acid haplotypes observed, only one haplotype (3D7 sequence) was seen in all four continents (64%). Forty-eight haplotypes had frequencies of less than 5%, and 40 haplotypes were continent specific. The geographical difference in the diversity and distribution of serca SNPs and haplotypes lays the groundwork for assessing whether some artemisinin resistance-associated mutations and haplotypes are selected by ACTs

    Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5–10-Year-Old Burkinabe Children Naturally Exposed to Malaria

    No full text
    Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate
    corecore