18 research outputs found

    High-Calcium Limestone Deposits of Cumberland Valley, Pennsylvania

    Get PDF
    Author Institution: University of Minnesota, Minneapolis, MinnesotaHigh-calcium limestones occur in the upper part of the New Market Formation, of Lower Middle Ordovician age, in Franklin and Cumberland Counties, Pennsylvania. The high-calcium facies of the New Market Formation is represented by sublithographic limestone or vaughanite, which probably formed in quiet water, low-energy environments such as intershoal lagoons, or in protected bays similar to the present-day Florida Bay environment. Rapid facies changes are characteristic of the strata. The better grade of stone lies in the upper 100 to 125 feet of the New Market Formation and averages 95-97% calcium carbonate. Silica and magnesia are about equal in amount as impurities. One high-calcium belt extends from the Maryland state line through Chambersburg and Newville to beyond Carlisle. The strata in this belt are structurally complex, which requires careful field study and core-drilling prior to exploitation. Stone suitable for blast-furnace flux is present in relatively large amounts, but stone for open-hearth use or portland cement requires more selective quarrying

    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOCHEMICAL ANALYSIS OF POTASH MINE SEEP OILS, COLLAPSED BRECCIA PIPE OIL SHOWS AND SELECTED CRUDE OILS, EDDY COUNTY, NEW MEXICO Geocheraical Analysis of Mine Seep Oils, Collapsed Breccia Pipe Oil

    No full text
    ABSTRACT Oil shows, in the form of oil stains and bleeding oil, in core samples from two breccia pipes, Hills A and C, Eddy County, New Mexico, and seepage oils in a potash mine near Hill C breccia pipe are geochemically similar. The geochemical similarities strongly suggest that they belong to the same family of oils and were derived from similar sources. The oils are relatively high in sulfur (0.89 to 1.23 percent), rich in hydrocarbons (average 82 percent), relatively high in saturated hydrocarbon/aromatic hydrocarbon ratios (average 2.9) f and based on analysis of seep oils alone, have a low API gravity (average 19.4 ). The oils are for the most part severely biodegraded as attested by the loss of n-paraffin molecules. Geochemical comparison of seven crude oils collected in the vicinity of the breccia pipes indicates that the Yates oils are the likely source of the above family of oils. Six barrels of crude oil that were dumped into a potash exploration borehole near Hill C breccia pipe, to release stuck casing, are considered an unlikely source of the breccia pipe and mine seep oils. Volumetric and hydrodynamic constraints make it highly improbable that such a small volume of "dumped" oil could migrate over distances ranging from about 600 feet to 2.5 miles to the sites of the oil shows

    Lithology and organic geochemistry at DSDP Hole 77-535

    No full text
    Analyses of extractable organic matter from selected core samples obtained at DSDP Site 535 in the eastern Gulf of Mexico show that the asphalt (or tar) and adjacent oil stains in Lower Cretaceous fractured limestones have a common origin and are not derived from the surrounding organic-matter-rich limestones. Organic matter indigenous to those surrounding limestones was shown to be thermally immature and incapable of yielding the hydrocarbon mixture discovered. In contrast, the oil-stained and asphaltic material appears to be a post-migration alteration product of a mature oil that has migrated from source rocks deeper in the section, or from stratigraphically equivalent but compositionally different source-facies down-dip from the drill site. Further, hydrocarbons of the altered petroleum residues were shown to be similar to Sunniland-type oils found in Lower Cretaceous rocks of South Florida. The results suggest that shallowwater, platform-type source-rock facies similar to those that generated Sunniland-type oils, or deeper-water facies having comparable oil-generating material, are present in this deep-water (> 3000 m) environment. These findings have important implications for the petroleum potential in the eastern Gulf of Mexico and for certain types of deep-sea sediments
    corecore