8 research outputs found

    The Influence of Climatic Aging on the Performance of Wood-Based Panels

    Get PDF
    The purpose of this work is to experimentally determine the climatic effects on the performance of wood-based panels using the methodology developed on the basis of the thermo-fluctuation concept of material aging. This methodology makes it possible to determine the durability of the material by taking into account the simultaneous action of temperature, time, and mechanical stress, as well as additional external influences. The experiments were conducted on particleboard, fiberboard, and plywood. The following climatic effects were studied experimentally in specialized laboratory facilities: high humidity, thermal aging, and UV-irradiation. As the evaluation indicators of the performance characteristics of wood boards were selected, water absorption, swelling rate, thermal expansion, penetration strength, and bending strength. From a theoretical point of view, the value of this work lies in demonstrating a methodology for determining the performance characteristics of particleboard, fiberboard, and plywood, which is highly accurate by considering these characteristics together rather than separately. From a practical point of view, this paper contains experimental results that allow us to judge the characteristics of the wood boards. It has been proven that exposure to UV rays and heat aging causes the binder between the filler particles to break down, and moisture is detrimental to the filler. The thermo-fluctuational constants obtained in the course of the study make it possible to predict the durability of the materials in question over a large range of operating parameters. Doi: 10.28991/CEJ-2023-09-06-015 Full Text: PD

    Surface Characterization of AZ31 Alloy after Long-Term Immersion in Simulated Body Fluid

    Get PDF
    The aim of the research campaign was to simulate in vitro the typical conditions for the corrosion in biofluid of a femoral bone implant manufactured with AZ31 alloy. The samples were immersed in biofluid (alpha-MEM) for time intervals of up to 56 days. For each immersion time, the chemical compositions and morphologies of the samples were studied with SEM, EDX, XRD, Raman spectroscopy, and XPS. The weight losses of the samples caused by corrosion were also measured. The results highlighted the formation of calcium phosphate crystals on the surface of the samples. This type of coating is well-known for its excellent corrosion resistance and for its ability to accelerate tissue regeneration. The deceleration of the corrosion process, observed after 28 days of immersion in biofluid, confirms the anti-corrosive effect of the coating that was spontaneously formed during the immersion tests

    Process modelling of seasonal hot water supply heliosystem

    No full text
    A variant of the problem statement is proposed to develop an algorithm for calculating a solar collector of hot water supply for an individual dwelling. The purpose of the calculations is to determine the approximate values of the main characteristics of the heliosystem of hot water supply, which affect the technical and economic indicators of the system and determine the operating mode of the system, its comfort in use and maintenance

    Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean

    No full text
    Northern Dvina River is one of the largest rivers in the European Arctic flowing into the White Sea through the populated regions with developed industry. Floating plastics include microplastics (0.5–5 mm) and mesoplastics (5–25 mm) were observed on seasonal variations in the Northern Dvina River mouth. The samples were collected every month from September to November 2019 and from May to October 2020 with a Neuston net that was togged 3 nautical miles in the Korbel'nyy Branch of the River delta. Chemical composition of the plastic particles was determined using a Fourier transmission infrared spectrometer. The majority of the microplastics were identified as polyethylene 52.6%, followed by polypropylene 36.8%. After estimating the export fluxes of microplastics from the Northern Dvina River to the Arctic, there is no significant seasonal variation of the river export of microplastics. The microplastics export rate during the spring flood period in May turned out to be maximum, 58 items/s, while the minimum discharge was in September with a value of 9 items/s. The average weight concentration of microplastics was 18.5 μg/m3, which is higher than it was found in the Barents Sea – 12.5 μg/m3 and several times higher than in the Eurasian Arctic on average - 3.7 μg/m3. These results indicate that the Northern Dvina River is being one of the main sources of microplastic pollution of the White and the Barents Seas

    Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean

    Get PDF
    Northern Dvina River is one of the largest rivers in the European Arctic flowing into the White Sea through the populated regions with developed industry. Floating plastics include microplastics (0.5–5 mm) and mesoplastics (5–25 mm) were observed on seasonal variations in the Northern Dvina River mouth. The samples were collected every month from September to November 2019 and from May to October 2020 with a Neuston net that was togged 3 nautical miles in the Korbel'nyy Branch of the River delta. Chemical composition of the plastic particles was determined using a Fourier transmission infrared spectrometer. The majority of the microplastics were identified as polyethylene 52.6%, followed by polypropylene 36.8%. After estimating the export fluxes of microplastics from the Northern Dvina River to the Arctic, there is no significant seasonal variation of the river export of microplastics. The microplastics export rate during the spring flood period in May turned out to be maximum, 58 items/s, while the minimum discharge was in September with a value of 9 items/s. The average weight concentration of microplastics was 18.5 μg/m3, which is higher than it was found in the Barents Sea – 12.5 μg/m3 and several times higher than in the Eurasian Arctic on average - 3.7 μg/m3. These results indicate that the Northern Dvina River is being one of the main sources of microplastic pollution of the White and the Barents Seas.publishedVersio

    AICAR Improves Outcomes of Metabolic Syndrome and Type 2 Diabetes Induced by High-Fat Diet in C57Bl/6 Male Mice

    No full text
    The aim of the study was to investigate the effect of AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on the consequences of metabolic syndrome and type 2 diabetes induced by the consumption of a high-fat diet (HFD) in male C57Bl/6 mice. Additionally, the animals from group 6 were administered Methotrexate (MTX) at a dose of 1 mg/kg in parallel with AICAR, which slows down the metabolism of AICAR. The animals were recorded with signs of metabolic syndrome and type 2 diabetes mellitus by recording their body weights, glucose and insulin levels, and the calculating HOMA-IRs. At the end of the study, at the end of the 13th week, during necropsy, the internal organs were assessed, the masses of the organs were recorded, and special attention was paid to visceral fat, assessing its amount and the mass of the fat surrounding epididymis. The biochemical parameters and histology of the internal organs and tissues were assessed. The animals showed signs of metabolic syndrome and type 2 diabetes, namely, weight gain, hyperglycemia, hyperinsulinemia, an increase in the amount and mass of abdominal fat, and metabolic disorders, all expressed in a pathological change in biochemical parameters and pathological changes in internal organs. The AICAR treatment led to a decrease in body weight, a decrease in the amount and mass of abdominal fat, and an improvement in the pathomorphological picture of internal organs. However, some hepatotoxic effects were observed when the animals, on a received standard diet (STD), were treated with AICAR starting from the first day of the study. The additional administration of MTX, an AICAR metabolic inhibitor, did not improve its efficacy. Thus, AICAR has therapeutic potential for the treatment of metabolic syndrome and type 2 diabetes
    corecore