202 research outputs found

    The formation of the Milky Way halo and its dwarf satellites, a NLTE-1D abundance analysis. I. Homogeneous set of atmospheric parameters

    Get PDF
    We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bo\"otes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4 < [Fe/H] < -1.7 metallicity range. We show that, in the [Fe/H] > -3.5 regime, the non-local thermodynamic equilibrium (NLTE) calculations with non-spectroscopic effective temperature (Teff) and surface gravity (log~g) based on the photometric methods and known distance provide consistent abundances of the Fe I and Fe II lines. This justifies the Fe I/Fe II ionisation equilibrium method to determine log g for the MW halo giants with unknown distance. The atmospheric parameters of the dSphs and MW stars were checked with independent methods. In the [Fe/H] > -3.5 regime, the Ti I/Ti II ionisation equilibrium is fulfilled in the NLTE calculations. In the log~g - Teff plane, all the stars sit on the giant branch of the evolutionary tracks corresponding to [Fe/H] = -2 to -4, in line with their metallicities. For some of the most metal-poor stars of our sample, we hardly achieve consistent NLTE abundances from the two ionisation stages for both iron and titanium. We suggest that this is a consequence of the uncertainty in the Teff-colour relation at those metallicities. The results of these work provide the base for a detailed abundance analysis presented in a companion paper.Comment: 25 pages, 7 tables, 7 figures, A&A, accepte

    Cool spots on the surface of the active giant PZ Mon

    Full text link
    Based on the multiband (BVRIJHKL) photometric observations of the active red giant PZ Mon performed for the first time in the winter season of 2017-2018, we have determined the main characteristics of the spotted stellar surface in a parametric three-spot model. The unspotted surface temperature is Teff=4730 K, the temperature of the cool spots is Tspot=3500 K, their relative area is about 41%, and the temperature of the warm spots is Twarm=4500 K with a maximum relative area up to 20%. The distribution of spots over the stellar surface has been modeled. The warm spots have been found to be distributed at various longitudes in the hemisphere on the side of the secondary component and are most likely a result of its influence.Comment: 5 pages, 7 figure
    corecore