7 research outputs found

    องค์ประกอบทางเคมีจากใบโปรงขาว

    No full text
    Thesis (M.Sc., Organic Chemistry)--Prince of Songkla University, 200

    Inhibitory Effect on β

    No full text
    Introduction. Benchalokawichian (BCW), a Thai traditional herbal formulation, has long been used as antipyretic and to treat skin disorders. It comprises roots from five herbs: Ficus racemosa, Capparis micracantha, Clerodendrum petasites, Harrisonia perforata, and Tiliacora triandra. This polyherbal remedy has recently been included in the Thailand National List of Essential Medicines (Herbal Products list). Methodology. A Bioassay-guided fractionation technique was used to evaluate antiallergy activities of crude extracts, and those obtained by the multistep column chromatography isolation of pure compounds. Inhibitory effect on the release of β-hexosaminidase from RBL-2H3 cells was used to determine antiallergic activity. Results. Two pure compounds from BCW formulation showed higher antiallergic activity than crude or semipure extracts. Pectolinarigenin showed the highest antiallergic activity, followed by O-methylalloptaeroxylin, with IC50 values of 6.3 μg/mL and 14.16 μg/mL, respectively. Moreover, the highest activities of pure compounds were significantly higher than chlorpheniramine (16.2 μg/mL). Conclusions. This study provides some support for the use of BCW in reducing itching and treatment of other skin allergic disorders. The two isolated constituents exhibited high antiallergic activity and it is necessary to determine their mechanism of action. Further phytochemical and safety studies of pure compounds are required before development of these as antiallergy commercial remedies

    In Vitro Wound Healing Activities of Three Most Commonly Used Thai Medicinal Plants and Their Three Markers

    No full text
    Skin ensures that a constant internal environment can be maintained in an ever-changing external environment. When a wound occurs on the skin, the inflammatory and proliferative phases are initiated in response to injury. Thai traditional medicine (TTM), using medicinal plants and ancient knowledge, has been used to treat wounds. Eight Thai medicinal plants, most commonly used to treat wounds, were evaluated for their in vitro biological activities such as antioxidation by NBT assay, anti-inflammation by production inhibition of NO, promoting fibroblast cell proliferation, and wound closure activities. Plant materials were extracted with 95% ethanol or distilled water and then concentrated and dried. Statistical analysis of data was done using one-way ANOVA at p value of 0.05. The ethanolic extracts of Garcinia mangostana L., Glycyrrhiza glabra L., and Nigella sativa L. could inhibit the production of superoxide anion with the IC50 values of 13.97 ± 0.38, 28.62 ± 1.91, and 71.54 ± 3.22 μg/ml and nitric oxide with the IC50 values of 23.97 ± 0.91, 46.35 ± 0.43, and 78.48 ± 4.46 μg/ml, respectively. These extracts could promote cell proliferation and accelerate wound recovery at the rate of 2.02 ± 0.03, 2.12 ± 0.03, and 2.65 ± 0.05% per hour, respectively. Three established markers from these three plants were selected according to the selection criteria. Alpha-mangostin, glycyrrhizin, and thymoquinone were found to be the active markers for wound closure activities. The ethanolic extracts of G. mangostana, G. glabra, and N. sativa could scavenge superoxide anion and inhibit the production of nitric oxide; therefore these extracts could assist in surpassing the inflammatory phase and protected the cells surrounding the wound area. Most importantly, these extracts also increased the proliferation and accelerated wound closure, indicating that these plant extracts could be promoting wound healing processes and support the use of TTM

    In Vitro Cytotoxic Activity against Breast, Cervical, and Ovarian Cancer Cells and Flavonoid Content of Plant Ingredients Used in a Selected Thai Traditional Cancer Remedy: Correlation and Hierarchical Cluster Analysis

    No full text
    This study aimed to investigate in vitro cytotoxic activity of selected plant ingredients from a traditional Thai remedy for the treatment of cancer patients against cancer cells occurring in women such as MCF-7 (breast cancer), SKOV3 (ovarian cancer), and HeLa (cervical cancer) cell lines. The plants and the remedy were macerated with 95% ethanol and boiled in water. Cytotoxic activity of the extracts was analyzed by SRB assay. Total flavonoid contents of the extracts were determined and their correlation with cytotoxic activity was evaluated. The hierarchical cluster analysis (HCA) was used to classify the extracts by their cytotoxic characteristics. A total of 66.7% of the plants was active against the tested cancer cell lines. Among the 44 plants in the remedy used for cancer treatment, nine plants that are also used in Thai cuisine exerted significant cytotoxicity against tested cancer cell lines. Eleven plants in the remedy were active against at least one of the tested cancer cell lines. All extracts were grouped into three groups and illustrated as heat map and hierarchical dendrogram. Total flavonoid content showed weak or no correlation with cytotoxic activity. A. dahurica, F. albopurpurea, and T. indica selectively exerted potent cytotoxic activity against MCF-7 with SI value more than 6. A. galanga, P. amarus, L. striatum, H. indicum, and F. vulgare exerted moderate cytotoxicity to all tested cell with low toxicity to normal cells. The correlation and HCA performed in this study provided an alternative way to investigate biological activities of plant ingredients in polyherbal traditional remedies

    Anti-Inflammatory Investigations of Extracts of Zanthoxylum rhetsa

    No full text
    Zanthoxylum rhetsa has been consumed in the diet in northern Thailand and also used as a medicament in ancient scripture for arthropathies. Thus, this study aimed to evaluate the activity of various extracts from differential parts of Z. rhetsa via inhibition of inflammatory mediators (NO, TNF-α, and PGE2) in RAW264.7 macrophages. The chemical composition in active extracts was also analyzed by GC/MS. The parts of this plant studied were whole fruits (F), pericarp (P), and seed (O). The methods of extraction included maceration in hexane, 95% ethanol and 50% ethanol, boiling in water, and water distillation. The results demonstrated that the hexane and 95% ethanolic extract from pericarp (PH and P95) and seed essential oil (SO) were the most active extracts. PH and P95 gave the highest inhibition of NO production with IC50 as 11.99 ± 1.66 μg/ml and 15.33 ± 1.05 μg/ml, respectively, and they also showed the highest anti-inflammatory effect on TNF-α with IC50 as 36.08 ± 0.55 μg/ml and 34.90 ± 2.58 μg/ml, respectively. PH and P95 also showed the highest inhibitory effect on PGE2 but less than SO with IC50 as 13.72 ± 0.81 μg/ml, 12.26 ± 0.71 μg/ml, and 8.61 ± 2.23 μg/ml, respectively. 2,3-Pinanediol was the major anti-inflammatory compound analyzed in PH (11.28%) and P95 (19.82%) while terpinen-4-ol constituted a major anti-inflammatory compound in SO at 35.13%. These findings are the first supportive data for ethnomedical use for analgesic and anti-inflammatory activity in acute (SO) and chronic (PH and P95) inflammation
    corecore