108 research outputs found

    Valorization of chestnut shells for hydrogen production by Clostridium butyricum fermentation

    Get PDF
    Chestnut shell s (CS) is an agronomic waste generated from the peeling process of the chestnut fruit. It is well-known that the extract of CS contains high amounts of tannins, which are polyphenolic antioxidants1, but this agronomic residue also contains about 36% sugars in form of polysaccharides, and no utilization of chestnut shells as potential source of fermentable sugars has been considered so far. As consequence, this waste represents an interesting exploitable source for monosaccharides production, and in this study we evaluated the potential of biohydrogen production from CS hydrolyzate

    A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification

    Get PDF
    ABSTRACT: An intracellular β-xylosidase (AbXyl), fromthe thermoalkaline Anoxybacillus sp. 3M,was purified and characterized. The homodimeric enzyme (140 kDa) was optimally active at 65 °C and pH 5.5, exhibited half life of 10 h at 60 °C, 78 and 88% residual activity after 24 h, at pH 4.5 and 8.0, respectively. Fe2+, Cu2+, Al3+, Ag+ and Hg2+inhibited the enzyme; the activity was moderately stimulated by SDS and not influenced by β-mercaptoethanol. In the presence of p-nitrophenyl-β-D-xylopyranoside, AbXyl exhibited Km of 0.19 mM, Kcat of 453.29 s−1, KcatKm−1 of 2322 s−1mMandwas moderately influenced by xylose (Ki 21.25mM). The enzyme hydrolyzed xylo-oligomers into xylose and catalyzed transxylosilation reactions also in presence of alcohols as acceptors, producing xylo-oligosaccharides and alkyl-xylosides. Finally AbXyl was applied towards a statistically optimized process of brewery's spent grain bioconversion, highlighting the important role of this biocatalyst in reaching high yields of fermentable sugars.info:eu-repo/semantics/publishedVersio

    Shippers’ choice behaviour on choosing transport mode: a case of ASEAN region

    Get PDF
    Using South East Asia as a case study, shippers’ choice of transport modes taking into consideration their economic and environmental impacts was examined in this research. A triangulation of both quantitative and qualitative methods was deployed. First, a quantitative analysis using secondary data was conducted to establish the index score, which includes four quantitative factors (transport distance, cost, time, and CO2 emission), for each transport mode. In addition, in order to examine at what level of the importance weight shippers would change their decision on transport mode, a sensitivity analysis involving the four aforesaid factors was also conducted. Next, an in-depth interview with a major shipper in Singapore was also carried out to qualitatively validate the aforesaid four quantitative factors as well as two additional qualitative factors, namely, customer service and shipper-forwarder relationship in relation to shipper’s choice. The results from this study indicate that shippers might change to the short-sea shipping (SSS) mode when the importance weights of cost and CO2 emission increase, and to trucking mode when the weight of time decreases. It was also found that cost is the most important factor when shippers choose carriers/forwarders, whereas CO2 emission is not an important factor at the current stage. However, if the government imposes financial measures such as fine and/or tax for CO2 emission, shippers would choose eco-friendlier transport modes. This research is the first study considering the environmental issue as one of important factors that influence shippers’ choice behaviour. This research also facilitates managers’ understanding on how shippers may select LSPs taking into account important factors including the environmental consideration

    Effect of polymorphisms in the Slc11a1 coding region on resistance to brucellosis by macrophages in vitro and after challenge in two Bos breeds (Blanco Orejinegro and Zebu)

    Get PDF
    The resistance/susceptibility of selected cattle breeds to brucellosis was evaluated in an F1 population generated by crossing animals classified as resistant (R) and susceptible (S) (R x R, R x S, S x R, S x S) based on challenges in vitro and in vivo. The association between single nucleotide polymorphisms identified in the coding region of the Slc11a1 gene and resistance/susceptibility was estimated. The trait resistance or susceptibility to brucellosis, evaluated by a challenge in vitro, showed a high heritable component in terms of additive genetic variance (h2 = 0.54 ± 0.11). In addition, there was a significant association (p < 0.05) between the control of bacterial survival and two polymorphisms (a 3'UTR and SNP4 located in exon 10). The antibody response of animals classified as resistant to infection by Brucella abortus differed significantly (p < 0.05) from that of susceptible animals. However, there was no significant association between single nucleotide polymorphisms located in the Slc11a1 gene and the antibody response stimulated by a challenge in vivo

    Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation

    Get PDF
    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5–10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K+ that showed a stimulating effect, and Fe2+, Co2+ and Hg2+, which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation
    corecore