32 research outputs found

    A progressive hedging approach to solve harvest scheduling problem under climate change

    Get PDF
    Due to the long time horizon typically characterizing forest planning, uncertainty plays an important role when developing forest management plans. Especially important is the uncertainty related to recently human-induced global warming since it has a clear impact on forest capacity to contribute to biogenic and anthropogenic ecosystem services. If the forest manager ignores uncertainty, the resulting forest management plan may be sub-optimal, in the best case. This paper presents a methodology to incorporate uncertainty due to climate change into forest management planning. Specifically, this paper addresses the problem of harvest planning, i.e., defining which stands are to be cut in each planning period in order to maximize expected net revenues, considering several climate change scenarios. This study develops a solution approach for a planning problem for a eucalyptus forest with 1000 stands located in central Portugal where expected future conditions are anticipated by considering a set of climate scenarios. The model including all the constraints that link all the scenarios and spatial adjacency constraints leads to a very large problem that can only be solved by decomposing it into scenarios. For this purpose, we solve the problem using Progressive Hedging (PH) algorithm, which decomposes the problem into scenario sub-problems easier to solve. To analyze the performance of PH versus the use of the extensive form (EF), we solve several instances of the original problem using both approaches. Results show that PH outperforms the EF in both solving time and final optimality gap. In addition, the use of PH allows to solve the most di cult problems while the commercial solvers are not able to solve the EF. The approach presented allows the planner to develop more robust management plans that incorporate the uncertainty due to climate change in their plansinfo:eu-repo/semantics/publishedVersio

    Two Scalable Approaches for Burned-Area Mapping Using U-Net and Landsat Imagery

    Full text link
    Monitoring wildfires is an essential step in minimizing their impact on the planet, understanding the many negative environmental, economic, and social consequences. Recent advances in remote sensing technology combined with the increasing application of artificial intelligence methods have improved real-time, high-resolution fire monitoring. This study explores two proposed approaches based on the U-Net model for automating and optimizing the burned-area mapping process. Denoted 128 and AllSizes (AS), they are trained on datasets with a different class balance by cropping input images to different sizes. They are then applied to Landsat imagery and time-series data from two fire-prone regions in Chile. The results obtained after enhancement of model performance by hyperparameter optimization demonstrate the effectiveness of both approaches. Tests based on 195 representative images of the study area show that increasing dataset balance using the AS model yields better performance. More specifically, AS exhibited a Dice Coefficient (DC) of 0.93, an Omission Error (OE) of 0.086, and a Commission Error (CE) of 0.045, while the 128 model achieved a DC of 0.86, an OE of 0.12, and a CE of 0.12. These findings should provide a basis for further development of scalable automatic burned-area mapping tools

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore