14 research outputs found

    Mercury records covering the past 90 000 years from lakes Prespa and Ohrid, SE Europe

    Get PDF
    The element mercury (Hg) is a key pollutant, and much insight has been gained by studying the present-day Hg cycle. However, many important processes within this cycle operate on timescales responsive to centennial- to millennial-scale environmental variability, highlighting the importance of also investigating the longer-term Hg records in sedimentary archives. To this end, we here explore the timing, magnitude, and expression of Hg signals retained in sediments over the past ∼ 90 kyr from two lakes, linked by a subterranean karst system: Lake Prespa (Greece, North Macedonia, and Albania) and Lake Ohrid (North Macedonia and Albania). Results suggest that Hg fluctuations are largely independent of variability in common host phases in each lake, and the recorded sedimentary Hg signals show distinct differences first during the Late Pleistocene (Marine Isotope Stages 2–5). The Hg signals in Lake Prespa sediments highlight an abrupt, short-lived peak in Hg accumulation coinciding with local deglaciation. In contrast, Lake Ohrid shows a broader interval with enhanced Hg accumulation and, superimposed, a series of low-amplitude oscillations in Hg concentration peaking during the Last Glacial Maximum, which may result from elevated clastic inputs. Divergent Hg signals are also recorded during the Early and Middle Holocene (Marine Isotope Stage 1). Here, Lake Prespa sediments show a series of large Hg peaks, while Lake Ohrid sediments show a progression to lower Hg values. Since ∼ 3 ka, anthropogenic influences overwhelm local fluxes in both lakes. The lack of coherence in Hg accumulation between the two lakes suggests that, in the absence of an exceptional perturbation, local differences in sediment composition, lake structure, Hg sources, and water balance all influence the local Hg cycle and determine the extent to which Hg signals reflect local- or global-scale environmental changes

    Mercury records covering the past 90 000 years from lakes Prespa and Ohrid, SE Europe

    Get PDF
    The element mercury (Hg) is a key pollutant, and much insight has been gained by studying the present-day Hg cycle. However, many important processes within this cycle operate on timescales responsive to centennial- to millennial-scale environmental variability, highlighting the importance of also investigating the longer-term Hg records in sedimentary archives. To this end, we here explore the timing, magnitude, and expression of Hg signals retained in sediments over the past ∼ 90 kyr from two lakes, linked by a subterranean karst system: Lake Prespa (Greece, North Macedonia, and Albania) and Lake Ohrid (North Macedonia and Albania). Results suggest that Hg fluctuations are largely independent of variability in common host phases in each lake, and the recorded sedimentary Hg signals show distinct differences first during the Late Pleistocene (Marine Isotope Stages 2–5). The Hg signals in Lake Prespa sediments highlight an abrupt, short-lived peak in Hg accumulation coinciding with local deglaciation. In contrast, Lake Ohrid shows a broader interval with enhanced Hg accumulation and, superimposed, a series of low-amplitude oscillations in Hg concentration peaking during the Last Glacial Maximum, which may result from elevated clastic inputs. Divergent Hg signals are also recorded during the Early and Middle Holocene (Marine Isotope Stage 1). Here, Lake Prespa sediments show a series of large Hg peaks, while Lake Ohrid sediments show a progression to lower Hg values. Since ∼ 3 ka, anthropogenic influences overwhelm local fluxes in both lakes. The lack of coherence in Hg accumulation between the two lakes suggests that, in the absence of an exceptional perturbation, local differences in sediment composition, lake structure, Hg sources, and water balance all influence the local Hg cycle and determine the extent to which Hg signals reflect local- or global-scale environmental changes

    Neurodevelopmental dimensional assessment of young children at high genomic risk of neuropsychiatric conditions

    Get PDF
    Background Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability. Insights into this can elucidate transdiagnostic markers of risk that may underlie later development of neuropsychiatric outcomes. Methods Thirty two children with 22q11.2 Deletion Syndrome (22q11.2DS) (mean age = 4.1 [SD = 1.2] years) and 12 sibling controls (mean age = 4.1 [SD = 1.5] years) underwent in-depth dimensional phenotyping across several developmental domains selected as being potential early indicators of neurodevelopmental and psychiatric liability. Comparisons were conducted of the dimensional developmental phenotype of 22q11.2DS and sibling controls. For autistic traits, both parents and children were phenotyped using the Social Responsiveness Scale. Results Young children with 22q11.2DS exhibited large impairments (Hedge's g ≥ 0.8) across a range of developmental domains relative to sibling controls, as well as high rates of transdiagnostic neurodevelopmental and psychiatric traits. Cluster analysis revealed a subgroup of children with 22q11.2DS (n = 16; 53%) in whom neurodevelopmental and psychiatric liability was particularly increased and who differed from other children with 22q11.2DS and non-carrier siblings. Exploratory analyses revealed that early motor and sleep impairments indexed liability for neurodevelopmental and psychiatric outcomes. Maternal autism trait scores were predictive of autism traits in children with 22q11.2DS (intraclass correlation coefficients = 0.47, p = 0.046, n = 31). Conclusions Although psychiatric conditions typically emerge later in adolescence and adulthood in 22q11.2DS, our exploratory study was able to identify a range of early risk indicators. Furthermore, findings indicate the presence of a subgroup who appeared to have increased neurodevelopmental and psychiatric liability. Our findings highlight the scope for future studies of early risk mechanisms and early intervention within this high genetic risk patient group

    A familial risk enriched cohort as a platform for testing early interventions to prevent severe mental illness

    Get PDF

    Supereruption doublet at a climate transition

    Get PDF
    About 74,000 years ago Earth’s climate abruptly transitioned to particularly severe cold and dry conditions, which lasted for several millennia. An incomplete eruption record may be why volcanic eruptions were dismissed as the trigger

    The trace-element composition of a Polish stalagmite: Implications for the use of speleothems as a record of explosive volcanism

    Get PDF
    Identification of volcanic signals preserved in paleoenvironmental records can provide key insights into the timing and consequences of explosive volcanism. Yet the eruption record is incomplete and this confounds our ability to link volcanic eruptions to their impacts on climate and environments. Studies have suggested that stalagmite records can help to address these gaps, through the identification of transient geochemical variability associated with incorporation of elements derived from erupted material. However, the utility of stalagmites for tracing volcanism is poorly constrained globally. Here, we present a high-resolution geochemical dataset for stalagmite NIED08–05 from Niedźwiedzia Cave (Poland). We do this with two primary aims: (1) to test the suitability of NIED08–05 as a record of volcanism since 3 ka BP, and (2) to ascertain whether stalagmites grown in temperate regions preserve volcanic signals with success comparable to those grown in tropical regions. We find transient enrichments of 16 trace elements and the rare-earth-elements Y, La, Nd, which coincide with the timing of some known eruption events. Using Principal Component Analysis (PCA) we find that elements atypically incorporated into calcite (e.g., Fe) co-vary. Similarly, filtering PC1 (17% of the dataset variability) for high magnitude deviations from a baseline signal yields tentative agreement between PC scores and some known large eruptions with tephra found in Poland. We use our analysis to discuss the complexities involved in associating volcanic signals with stalagmite chemistry in temperate regions far from the source of large eruptions. The transport pathway from volcanic source to stalagmite growth surfaces includes the complex Niedźwiedzia Cave hydrological system and is influenced by dense forest above the cave site. Together these factors increase the potential for attenuation of volcanic-derived chemical signals prior to reaching the stalagmite, and so make it difficult to unambiguously link trace element enrichments in NIED08–05 to volcanic eruptions. Our results provide strong evidence that in a temperate depositional environment far from active volcanoes, climate and hydrology conspire to mute the strength of volcanic geochemical signals. Therefore, this work provides important incentives for future research in this area by highlighting that stalagmites grown in a comparatively simple hydrological regime and grown in caves overlain by thin vegetation and soil cover , may preserve volcanic signatures with greater success than those grown in temperate environments
    corecore