5 research outputs found
Distributed temperature sensors system: field tests on Earth dam
The present paper examines the use of optical fiber as a distributed temperature sensor to detect leaks in earth dams. This real-time data acquisition technique complements current auscultation systems and improves monitoring of these critical infrastructures. The aim of this paper is to provide a practical illustration of this novel and promising technique and, particularly, of the precautions to consider to correctly deploy the sensor elements. For this last purpose, this document describes the field tests carried out on the Yesa dam in February 2017 and propose best practices concerning the implementation of the system.Peer ReviewedPostprint (published version
Climate services focused on water: quantity and quality
Ponencia presentada en: XII Congreso de la Asociación Española de Climatología celebrado en Santiago de Compostela entre el 19 y el 21 de octubre de 2022.This work was co-funded by the EIT Climate-KIC, financing the CRISI-ADAP-II project (EIT-CKIC-TC_2.13.7_190799), as well as by the Agència Valenciana de la Innovació, through the study “Aplicación de los servicios climáticos para el desarrollo de una estrategia de adaptación al cambio climático de los sistemas urbanos de abastecimiento” (INNTA3/2020/14), and supported by the Ministry for the Ecological Transition and the Demographic Challenge (MITECO) of the Spanish Government under the “IMpacts of climate change on wetlands Affected by GroUndwAter (IMAGUA)” project, Phase I and II (2021-2023)
3D Flow modelling of a transverse grate
The full scale (1:1) test platform located at the UPC (Universitat Politècnica de Catalunya)
allows us to reproduce the local runoff process and the study of inlet grates or other types of
capture systems.
Over the last few years, several tests have been made on this platform, which has helped to
determine the efficiency of each grate based on the chosen parameters, such as approaching
discharge and flow depth.
Prof. Gómez Valentin Manuel and Prof. Russo Beniamino proposed a new law, which would
define the grate efficiency as a function of the just mentioned parameters.
The goal of this study was to reproduce these tests for a specific grate (ULMA FNX 250
FTDM) with numerical code FLOW-3D which solves the RANS equation (Reynolds Average
Navier Stokes Equations); this is the best method to perform such detailed analysis.
The model includes the complete platform and the inlet zone, excluding all unnecessary parts,
decreasing the simulation computational cost.
The calibration was made comparing the results from the numerical simulation with
measurements taken during the experimental tests, such as the flow depth and the captured
discharge by the grate; the results were taken once the steady flow was reached.
The model’s final results showed minor acceptable errors and thus guarantee the validity of
the process.
The analysis of the results allows us to better understand how much water is intercepted by
the studied grate. This helps us determine the most adaptable process to a definite work
condition; with this information it also possible to propose a new inlet-design guideline to
improve its capture efficiency.
In conclusion, we determined that with good meshing, good modelling and good calibration it
is possible to use CFD solvers like Flow3D as an effective substitute for laboratory tests. This
is because they allow extrapolating much more information on the model.Incomin
3D Flow modelling of a transverse grate
The full scale (1:1) test platform located at the UPC (Universitat Politècnica de Catalunya)
allows us to reproduce the local runoff process and the study of inlet grates or other types of
capture systems.
Over the last few years, several tests have been made on this platform, which has helped to
determine the efficiency of each grate based on the chosen parameters, such as approaching
discharge and flow depth.
Prof. Gómez Valentin Manuel and Prof. Russo Beniamino proposed a new law, which would
define the grate efficiency as a function of the just mentioned parameters.
The goal of this study was to reproduce these tests for a specific grate (ULMA FNX 250
FTDM) with numerical code FLOW-3D which solves the RANS equation (Reynolds Average
Navier Stokes Equations); this is the best method to perform such detailed analysis.
The model includes the complete platform and the inlet zone, excluding all unnecessary parts,
decreasing the simulation computational cost.
The calibration was made comparing the results from the numerical simulation with
measurements taken during the experimental tests, such as the flow depth and the captured
discharge by the grate; the results were taken once the steady flow was reached.
The model’s final results showed minor acceptable errors and thus guarantee the validity of
the process.
The analysis of the results allows us to better understand how much water is intercepted by
the studied grate. This helps us determine the most adaptable process to a definite work
condition; with this information it also possible to propose a new inlet-design guideline to
improve its capture efficiency.
In conclusion, we determined that with good meshing, good modelling and good calibration it
is possible to use CFD solvers like Flow3D as an effective substitute for laboratory tests. This
is because they allow extrapolating much more information on the model.Incomin
LIFE BAETULO Project: Implementation of an Integrated Early Warning System to cope with urban floods
[EN] LIFE BAETULO (www.life-BAETULO.eu) is an European pilot project led by AQUATEC, funded by the LIFE Climate Action programme, with a budget of around 1.2 million of euros and with a duration of 2.5 years (from July 2020 to December 2022). An Integrated Early Warning System was developed and implemented in Badalona as a technical and adaption measure to reduce exposure and vulnerability of urban assets and citizens to climate change. The system considers major climate change-derived hazards such as floods, combined sewer overflows (CSOs) (mainly addressed in this paper), but also storm surges, heat and cold waves, snowfalls, windstorms, air pollution and forest fires. The platform was built on top of existing infrastructure such as meteorological and weather services, drainage infrastructure monitoring systems and official information channels. BAETULO adopted a multi-risk approach, in contrast with classic sectorial solutions which focus on just one hazard at a time. This paper describes the objectives of the project, the solution architecture, the validation methodology and the benefits for the city of Badalona.[ES] LIFE BAETULO (www.life-BAETULO.eu) ha sido un proyecto piloto de adaptación al cambio climático liderado por AQUATEC y con presupuesto de 1.2 millones de euros, financiado por la Comisión Europea en el marco del programa LIFE Climate Action. El objetivo del proyecto ha sido el desarrollo y la implementación de un sistema de Alerta Temprana Integral Multirriesgo en la ciudad de Badalona para reducir la exposición y la vulnerabilidad de los ciudadanos frente a los eventos climáticos. La duración de LIFE BAETULO ha sido de dos años y medio (Julio 2020 - Diciembre 2022). Tanto la fase de desarrollo como de implementación han contado con la participación de diferentes entidades como el Ayuntamiento de Badalona, el Área Metropolitana de Barcelona y Aigües de Barcelona, también socios del proyecto. Los principales peligros climáticos que permite gestionar el sistema de alerta integral son las inundaciones pluviales urbanas, los desbordamientos del sistema de saneamiento (DSS) (estas dos amenazas principalmente tratadas en este artículo), los temporales marítimos, las olas de calor y de frío, las nevadas, los temporales de viento, los incendios forestales y los episodios de contaminación atmosférica. El proyecto ha proporcionado un sistema capaz de detectar de manera temprana dichos eventuales peligros climáticos y ayudar en la gestión de eventos de crisis asociados a su ocurrencia. Como colofón al proyecto se ha desarrollado también una aplicación móvil como canal de comunicación del sistema con la ciudadanía, operadores y otros actores locales involucrados. BAETULO adopta un enfoque multirriesgo, en contraste con las soluciones sectoriales clásicas que se enfocan en un solo peligro a la vez. Este artículo describe los objetivos del proyecto, la arquitectura de la solución, la metodología de validación y los beneficios para la ciudad de Badalona.El Proyecto LIFE BAETULO se ha llevado a cabo gracias a la financiación del programa LIFE Climate Action LIFE19 CCA/ES/001180-LIFE BAETULOMartínez Puentes, M.; Russo, B.; Paindelli, A.; Recolons Lopez-Pinto, P.; Hernández Pérez, R.; Bofill Ananos, J.; Montes Carretero, J. (2023). Implementación de un sistema de alerta temprana integral contra las inundaciones urbanas y desbordamientos de sistemas de saneamiento: el Proyecto LIFE BAETULO. Ingeniería del Agua. 27(2):93-110. https://doi.org/10.4995/ia.2023.191299311027