136 research outputs found
The Impacts of Triclosan on Anaerobic Community Structures, Function, and Antimicrobial Resistance
Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan
The Impacts of Triclosan on Anaerobic Community Structures, Function, and Antimicrobial Resistance
Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan
The Effect of Thermal Hydrolysis Pretreatment on the Anaerobic Degradation of Nonylphenol and Short-Chain Nonylphenol Ethoxylates in Digested Biosolids
The presence of micropollutants can be a concern for land application of biosolids. Of particular interest are nonylphenol diethoxylate (NP2EO), nonylphenol monoethoxylate (NP1EO), and nonylphenol (NP), collectively referred to as NPE, which accumulate in anaerobically digested biosolids and are subject to regulation based on the environmental risks associated with them. Because biosolids are a valuable nutrient resource, it is essential that we understand how various treatment processes impact the fate of NPE in biosolids. Thermal hydrolysis (TH) coupled with mesophilic anaerobic digestion (MAD) is an advanced digestion process that destroys pathogens in biosolids and increases methane yields and volatile solids destruction. We investigated the impact of thermal hydrolysis pretreatment on the subsequent biodegradation of NPE in digested biosolids. Biosolids were treated with TH, anaerobic digestion, and aerobic digestion in laboratory-scale reactors, and NPE were analyzed in the influent and effluent of the digesters. NP2EO and NP1EO have been observed to degrade to the more estrogenic NP under anaerobic conditions; therefore, changes in the ratio of NP:NPE were of interest. The increase in NP:NPE following MAD was 56%; the average increase of this ratio in four sets of TH-MAD samples, however, was only 24.6 ± 3.1%. In addition, TH experiments performed in pure water verified that, during TH, the high temperature and pressure alone did not directly destroy NPE; TH experiments with NP added to sludge also showed that NP was not destroyed by the high temperature and pressure of TH when in a more complex sludge matrix. The post-aerobic digestion phases removed NPE, regardless of whether TH pretreatment occurred. This research indicates that changes in biosolids processing can have impacts beyond just gas production and solids destruction
Abundance and Diversity of Organohalide-Respiring Bacteria in Lake Sediments Across a Geographical Sulfur Gradient
Across the U.S. Upper Midwest, a natural geographical sulfate gradient exists in lakes. Sediment grab samples and cores were taken to explore whether this sulfur gradient impacted organohalide-respiring Chloroflexi in lake sediments. Putative organohalide-respiring Chloroflexi were detected in 67 of 68 samples by quantitative polymerase chain reaction. Their quantities ranged from 3.5 × 104 to 8.4 × 1010 copies 16S rRNA genes g−1 dry sediment and increased in number from west to east, whereas lake sulfate concentrations decreased along this west-to-east transect. A terminal restriction fragment length polymorphism (TRFLP) method was used to corroborate this inverse relationship, with sediment samples from lower sulfate lakes containing both a higher number of terminal restriction fragments (TRFs) belonging to the organohalide-respiring Dehalococcoidetes, and a greater percentage of the TRFLP amplification made up by Dehalococcoidetes members. Statistical analyses showed that dissolved sulfur in the porewater, measured as sulfate after oxidation, appeared to have a negative impact on the total number of putative organohalide-respiring Chloroflexi, the number of Dehalococcoidetes TRFs, and the percentage of the TRFLP amplification made up by Dehalococcoidetes. These findings point to dissolved sulfur, presumably present as reduced sulfur species, as a potentially controlling factor in the natural cycling of chlorine, and perhaps as a result, the natural cycling of some carbon as well
Effects of estrone and organic carbon exposure on the transformation of estrone
Exposure of biomass to estrone (E1) and alternate organic substrates was studied to determine whether cometabolism or multiple substrate utilization is an operating mechanism for the transformation of E1 and if feeding intervals affect the selection of E1 degrading bacteria. Biomass generated in membrane bioreactors (MBRs) was capable of degrading E1 regardless of E1 exposure. Nevertheless, pre-exposed biomass had higher E1 transformation rates (P = 0.05) and un-exposed biomass showed a clear lag phase (6 h) prior to E1 tranformation. These results are consistent with and strongly suggest metabolic transformation of E1 via multiple substrate utilization. In the feeding interval study, longer intervals between feeding periods selected for E1 degraders at high organic carbon loads (100 mg COD L−1 d−1; P = 0.018), but had no effect at low organic carbon loads (30 mg COD L−1 d−1; P = 0.32). A lag phase was observed in E1 transformation during famine periods but was absent during feast periods. This result indicates that the presence of other organic carbon substrates speeds the transformation of E1. This research is the first to demonstrate evidence for the role of multiple substrate utilization in the transformation of E1 and suggests operating conditions to improve selection for and activity of E1 degrading bacteria
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
Recommended from our members
Considerations for reducing food system energy demand while scaling up urban agriculture
There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and
interactions with other components of the food–energy–water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA.
Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently
robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs.
By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the opportunities for integrating the variety of UA structures and technologies, so that they are better able to exploit these urban waste flows and achieve whole-system reductions in energy demand. Any planning approach to implement these must, as always, assess how context will
influence the viability and value added from the promotion of UA
- …