1,794 research outputs found

    High-fructose corn-syrup-sweetened beverage intake increases 5-hour breast milk fructose concentrations in lactating women

    Get PDF
    This study determined the effects of consuming a high-fructose corn syrup (HFCS)-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers (n = 41) were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p < 0.01). Post hoc comparisons showed the HFCS-sweetened beverage vs. control beverage increased breast milk fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL), 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL), 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL), and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL) (all p < 0.05). The mean incremental area under the curve for breast milk fructose was also different between treatments (14.7 ± 1.2 vs. −2.60 ± 1.2 µg/mL × 360 min, p < 0.01). There was no treatment × time interaction for breast milk glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption

    In Situ Diazotroph Population Dynamics Under Different Resource Ratios in the North Pacific Subtropical Gyre.

    Get PDF
    Major advances in understanding the diversity, distribution, and activity of marine N2-fixing microorganisms (diazotrophs) have been made in the past decades, however, large gaps in knowledge remain about the environmental controls on growth and mortality rates. In order to measure diazotroph net growth rates and microzooplankton grazing rates on diazotrophs, nutrient perturbation experiments and dilution grazing experiments were conducted using free-floating in situ incubation arrays in the vicinity of Station ALOHA in March 2016. Net growth rates for targeted diazotroph taxa as well as Prochlorococcus, Synechococcus and photosynthetic picoeukaryotes were determined under high (H) and low (L) nitrate:phosphate (NP) ratio conditions at four depths in the photic zone (25, 45, 75, and 100 m) using quantitative PCR and flow cytometry. Changes in the prokaryote community composition in response to HNP and LNP treatments were characterized using 16S rRNA variable region tag sequencing. Microzooplankton grazing rates on diazotrophs were measured using a modified dilution technique at two depths in the photic zone (15 and 125 m). Net growth rates for most of the targeted diazotrophs after 48 h were not stimulated as expected by LNP conditions, rather enhanced growth rates were often measured in HNP treatments. Interestingly, net growth rates of the uncultivated prymnesiophyte symbiont UCYN-A1 were stimulated in HNP treatments at 75 and 100 m, suggesting that N used for growth was acquired through continuing to fix N2 in the presence of nitrate. Net growth rates for UCYN-A1, UCYN-C, Crocosphaera sp. (UCYN-B) and the diatom symbiont Richelia (associated with Rhizosolenia) were uniformly high at 45 m (up to 1.6 ± 0.5 d-1), implying that all were growing optimally at the onset of the experiment at that depth. Differences in microzooplankton grazing rates on UCYN-A1 and UCYN-C in 15 m waters indicate that the grazer assemblage preyed preferentially on UCYN-A1. Deeper in the water column (125 m), both diazotrophs were grazed at substantial rates, suggesting grazing pressure may increase with depth in the photic zone. Constraining in situ diazotroph growth and mortality rates are important steps for improving parameterization for diazotrophs in global ecosystem models

    LRO Diviner Soil Composition Measurements - Lunar Sample Ground Truth

    Get PDF
    The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [1,2] includes three thermal infrared channels spanning the wavelength ranges 7.55-8.05 microns 8.10-8.40 microns, and 8.38-8.68 microns. These "8 micron" bands were specifically selected to measure the "Christiansen feature". The wavelength location of this feature, referred to herein as CF, is particularly sensitive to silicate minerals including plagioclase, pyroxene, and olivine the major crystalline components of lunar rocks and soil. The general trend is that lower CF values are correlated with higher silica content and higher CF values are correlated with lower silica content. In a companion abstract, Greenhagen et al. [3] discuss the details of lunar mineral identification using Diviner data

    Remote Analysis of Regional Lunar Pyroclastic Deposits - Consistency and Precision of LRO Diviner Estimates

    Get PDF
    Allen et al. recently published a new method of estimating the FeO abundances of lunar pyroclastic deposits. This method is derived from orbital thermal infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter (LRO) spacecraft. The present study utilizes Diviner data from the Taurus Littrow regional pyroclastic deposit to assess the consistency and precision of such estimates

    Analysis of Lunar Pyroclastic Glass Deposit FeO Abundances by LRO Diviner

    Get PDF
    Telescopic observations and orbital images of the Moon reveal at least 75 deposits, often tens to hundreds of km across, that mantle mare or highland surfaces [1]. These deposits are interpreted as the products of pyroclastic eruptions and designated herein as lunar pyroclastic deposits (LPD). They are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized [2]. Delano [3] documented 25 distinct pyroclastic bead compositions in lunar soil samples, though the source deposits for most of these beads have not been identified. The pyroclastic deposits are important for many reasons. Petrology experiments and modeling have demonstrated that the pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon [4]. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood [5]. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources [6]

    Thermal Stability of Frozen Volatiles in the North Polar Region of Mercury

    Get PDF
    Earth-based radar observations have revealed the presence on Mercury of anomalously bright, depolarizing features that appear to be localized in the permanently shadowed regions of high-latitude impact craters [1]. Observations of similar radar signatures over a range of radar wavelengths implies that they correspond to deposits that are highly transparent at radar wavelengths and extend to depths of several meters below the surface [1]. Thermal models using idealized crater topographic profiles have predicted the thermal stability of surface and subsurface water ice at these same latitudes [2]. One of the major goals of the MESSENGER mission is to characterize the nature of radar-bright craters and presumed associated frozen volatile deposits at the poles of Mercury through complementary orbital observations by a suite of instruments [3]. Here we report on an examination of the thermal stability of water ice and other frozen volatiles in the north polar region of Mercury using topographic profiles obtained by the Mercury Laser Altimeter (MLA) instrument [4] in conjunction with a three-dimensional ray-tracing thermal model previously used to study the thermal environment of polar craters on the Moon [5]

    Remote Analysis of Lunar Pyroclastic Glass Deposits by LRO Diviner

    Get PDF
    Telescope observations and orbital images of the Moon reveal at least 75 deposits, often tens to hundreds of km across, that mantle mare or highland surfaces. These deposits are interpreted as the products of pyroclastic eruptions and designated herein as lunar pyroclastic deposits (LPD). They are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized. Delano documented 25 distinct pyroclastic bead compositions in lunar soil samples, though the source deposits for most of these beads have not been identified. The pyroclastic deposits are important for many reasons. Petrology experiments and modeling have demonstrated that the pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources

    Reconciling LCROSS and Orbital Neutron Water Abundance Estimates in Cabeus Crater

    Get PDF
    The Lunar Prospector Neutron Spectrometer (LPNS) first revealed Cabeus crater (84.9 deg S, 35.5degW) as having the highest inferred hydrogen on the Moon. Because of the broad LPNS footprint (approximately 40 km FWHM), the apparent peak water-equivalent hydrogen (WEH) concentration is only approximately 0.25 wt%, but could be much higher in smaller areas than the spectrometer footprint. Earlier image reconstruction work suggested that areas within permanent shadow have abundances approximately 1 wt% WEH. However, the LCROSS impact yielded total water estimates, ice plus vapor, of between 3 and 10 wt%. The large disagreement between LCROSS and apparent orbital values imply that either the ice is buried, by perhaps as much as 50 to 100 cm; or the ice distribution within Cabeus is spatially inhomogeneous, or both. Modeling reveals that the areal extent of a "shallow permafrost zone" is far greater than the area of permanent shadow. Ice can be virtually stable for billions of years within a few tens of centimeters of the surface in these areas. However, the LCROSS impact took place in an area of permanent shadow. If stably-trapped volatiles can be found in locales that receive occasional, oblique sunlight, landed missions may target these sites and eventual resource exploitation may be done more easily. Are orbital neutron data consistent with areally-extensive, volatile-rich cold traps? Orbital epithermal neutron data over the northern half of Cabeus (near the LCROSS impact site) are consistent with 0.2 wt% WEH or less in the "permafrost zone" near the crater. On the other hand, pixon reconstructions that confine the hydrogen enhancements to permanent shadow result in higher abundance estimates -- around 1 wt% if homogeneously mixed. But if the PSR abundance is increased to 10 wt%, consistent with the sum of all H-bearing compounds seen by LCROSS, a much larger-than-observed reduction in neutron count rate would be seen from orbit. It is likely that volatiles are inhomogeneously distributed, due to both impact processes and emplacement history. Two possibilities may bring consistency to the orbital and LCROSS measurements. Inhomogeneous lateral distribution: Consider the extreme case of a bimodal distribution within the crater -- dry and wet. In this case the epithermal leakage flux seen from orbit is a mixture of two different values, weighted according to fractional areas. Two possible outcomes, depending on whether the inferred leakage flux for the PSR or "permafrost" areas are considered. In the first case, approximately 40% of the PSR may be "wet", the remainder dry (and LCROSS was slightly lucky). However, if the whole area of permafrost is considered, then as little as 20% of the area will be as "wet" as the LCROSS results (and LCROSS was quite lucky). Inhomogeneous depth distribution: The leakage flux of thermal and epithermal neutrons depends on depth of burial of an icy layer beneath dry ferroan anorthosite soil (FAn). For the Cabeus PSR, the pixon reconstruction values for the epithermal flux allows a range of abundance and burial depth, while that of the thermal+epi detector constrains this range. (Uncertainties in iron abundance in the FAn can have significant impact on thermal neutron leakage flux estimates.) Between 20% and 40% of the Cabeus floor may be "wet", or alternatively a 5-10 wt% "wet" layer exists between 50 and 100 cm beneath a layer of dry regolith within the PSR. But volatile abundances of 5 wt% or more, distributed uniformly and homogeneously throughout the Cabeus PSR do not agree with orbital measurement
    • …
    corecore