4,510 research outputs found

    Combustion at reduced gravitational conditions

    Get PDF
    The theoretical structures needed for the predictive analyses and interpretations for flame propagation and extinction for clouds of porous particulates are presented. Related combustion theories of significance to reduced gravitational studies of combustible media are presented. Nonadiabatic boundaries are required for both autoignition theory and for extinction theory. Processes that were considered include, pyrolysis and vaporization of particulates, heterogeneous and homogeneous chemical kinetics, molecular transport of heat and mass, radiative coupling of the medium to its environment, and radiative coupling among particles and volume elements of the combustible medium

    Characterization by mercury porosimetry of nonwoven fiber media with deformation

    Get PDF
    The porosity and pore diameter distribution are important characteristics of nonwoven fiber media. With the advent of electrospinning, the production of mats of nonwoven fibrous materials with fiber diameters in the 0.1-10 mu m range has become more prevalent. The large compliance of these mats makes them susceptible to mechanical deformation under the pressures attained in a typical mercury porosimetry experiment. We report a theoretical analysis of the liquid volume measured during liquid intrusion porosimetry in the presence of deformation of such mats by one of two modes: buckling of the pores or elastic compression of the mat. For electrospun mats of poly(epsilon-caprolactone) with average fiber diameters ranging from 2.49 to 18.0 mu m, we find that buckling is the more relevant mode of deformation, and that it can alter significantly the determination of pore diameter distributions measured by mercury porosimetry.United States. Army Research Office (Institute for Soldier Nanotechnologies, Contract No. DAAD-19-02-D-0002)Massachusetts Institute of Technology (Nicolas G. and Dorothea K. Dumbros Scholarship and Fellowship Fund

    A Lumped Model for Rotational Modes in Phononic Crystals

    Full text link
    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in the band structure, and reproduces the dispersion relations. The model increases the possibilities of wave manipulation in phononic crystals. In particular, expressions, derived from the model, for eigen-frequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes
    corecore