
Characterization by Mercury Porosimetry of Nonwoven 
Fiber Media with Deformation 

 
 

Gregory C. Rutledge, Joseph L.Lowery, Chia-Ling Pai 
 

Department of Chemical Engineering and Institute for Soldier Nanotechnologies  
Massachusetts Institute of Technology, Cambridge, Massachusetts UNITED STATES 

 
Correspondence to: 

Gregory C. Rutledge     email: Rutledge@mit.edu  
 
 
 
ABSTRACT 

 

The porosity and pore diameter distribution are 
important characteristics of nonwoven fiber media. 
With the advent of electrospinning, the production of 
mats of nonwoven fibrous materials with fiber 
diameters in the 0.1-10 µm range has become more 
prevalent.  The large compliance of these mats makes 
them susceptible to mechanical deformation under 
the pressures attained in a typical mercury 
porosimetry experiment. We report a theoretical 
analysis of the liquid volume measured during liquid 
intrusion porosimetry in the presence of deformation 
of such mats by one of two modes: buckling of the 
pores or elastic compression of the mat. For 
electrospun mats of poly(ε-caprolactone) with 
average fiber diameters ranging from 2.49 to 18.0 
µm, we find that buckling is the more relevant mode 
of deformation, and that it can alter significantly the 
determination of pore diameter distributions 
measured by mercury porosimetry. 
 
Keywords: porosimetry; pore size distribution; 
electrospinning; nanofiber; nonwoven; buckling; 
elasticity; deformation 
 
INTRODUCTION 
 
Over the past ten years, electrospun nonwoven 
materials have become popular for a variety of 
applications, due primarily to the small fiber 
diameters involved and the correspondingly high 
specific surface area achievable, as well as the 
remarkable ease with which such materials are 
formed from a broad range of synthetic and natural 
polymers.  The application that has received probably 
the greatest attention is tissue engineering.  For 
applications such as this, not only the fiber size but 
also the porosity of the nonwoven material and its 

distribution among pores of various sizes are 
important. The fiber size distribution of these 
materials is readily quantified by measurements taken 
from scanning electron micrographs (SEM).  The 
pore size distribution or pore volume distribution, on 
the other hand, are somewhat more difficult to 
characterize accurately, and are less frequently 
reported despite their obvious importance. Reasons 
for this have to do with the irregular shape and 
copious interconnectivity of the void spaces within a 
fibrous nonwoven material, as well as the relative 
ease with which these materials are deformed.  The 
purpose of this report is to understand the origin and 
magnitude of the corrections associated with 
deformation of such porous materials at high 
pressure, in order to make the most accurate 
estimation of pore volume (or size) distribution from 
liquid intrusion porosimetry data.  The analysis is 
general, however; it is not limited to electrospun mats 
or even to fibrous materials. 
 
To date, several methods have been reported to 
characterize the porosity of electrospun nonwoven 
membranes [1-5].  The first of these is capillary flow 
porometry, which is based on the difference in flow 
rates of a gas through the dry membrane and through 
the membrane wetted with a low surface energy 
fluid; it is useful for characterizing the mean flow 
pore diameter, which is the size of the smallest 
constriction in the pores through which 50% of the 
gas flows when the membrane is dry [2].  While 
useful for transport applications, this method does not 
quantify the distribution of pore volume within the 
membrane.  For this purpose, mercury intrusion 
porosimetry and liquid extrusion porosimetry are 
used.  Mercury intrusion relies on the measurement 
of the volume of a non-wetting liquid, in this case 

Journal of Engineered Fibers and Fabrics  http://www.jeffjournal.org 
Volume 4, Issue 3 - 2009 

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4431713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Rutledge@mit.edu


mercury, intruded into the pores of the membrane as 
pressure is increased, while liquid extrusion relies on 
the measurement of the volume of a wetting liquid 
that is extruded from the pores of the membrane as 
pressure is increased.  Whether a liquid is wetting or 
non-wetting depends on its contact angle, , with the 
material of the membrane.  The pressure P at which 
the wetting liquid is extruded from, or the non-
wetting liquid intruded into, the pores is determined 
by the Washburn equation: 
 
Pi   D            (1) 

 
where D is the diameter of the pore and 
  4 cos .  γ is the surface energy of the liquid.  

‘+’ corresponds to liquid extrusion, where cosθ>0, 
and ‘–‘ corresponds to liquid intrusion, where 
cosθ<0.  Mercury is typically the liquid of choice for 
intrusion porosimetry because it exhibits a very high 
contact angle of 130-140° with most materials.  For 
reasons of symmetry discussed below, mercury 
intrusion porosimetry offers better opportunity to 
measure accurately the total pore volume of the 
membrane than does liquid extrusion porosimetry, 
but potentially suffers from inaccuracies due to the 
high pressures that are often required to intrude 
mercury into the smallest pores of the membrane.  
This is especially true for very compliant materials 
like electrospun nonwoven fiber mats, where both the 
fibers and the pores are one to two orders of 
magnitude smaller in diameter than those in 
conventional fiber media. Similar problems have 
been recognized in the study of xerogels and 
aerogels, where deformation of the sample may 
distort or preclude altogether the measurement of 
pore size distributions [6-8]. 
 
Fig 1a is a simplified, two-dimensional re-
presentation of a porous material that serves to 
illustrate three types of pores than may occur in a 
fibrous membrane wherein the fibers are oriented 
predominantly within the plane of the membrane.  
Each pore has structure, in that the diameter of the 
pore may vary along its length; the length scale of 
such variation is characterized by the distance “l”.  In 
an electrospun nonwoven mat, l is probably on the 
order of one to several times the average diameter of 
the fibers. Thus, each pore can be approximated by a 
collection of pore sections that differ in diameter.  
For nonwoven membranes where pores are multiply 
connected, it is sufficient to consider only the 
sequence of sections of largest diameter that provides 
access to the volume of a given pore section, since 
this determines the pressure at which liquid is 
intruded into or extruded from that section. In this 

way, a complicated, multiply-connected pore network 
can be decomposed into a set of “simple pores” like 
those illustrated in Fig 1a.   
 

  
FIGURE 1. Schematic diagram of pore geometry in a membrane. 
(a) blind pore (A), through pore with single constriction (B), and 
through pore with two constrictions (C).  The circles surrounding 
pore A represent cross-sections of fibers and illustrate 
schematically in 2D how such a pore might be defined in a 
nonwoven fiber membrane.  (b)  Equivalent pore size distribution 
corresponding to (B), as measured by liquid intrusion porosimetry, 
broken down into pore sections.  (c)  Illustration of two 
mechanisms by which buckling of a pore section, defined in this 
simple example by only four fibers, might occur.  The leftmost 
image is the pore section prior to buckling; the liquid pressure on 
the section is indicated by blue arrows, while the volume of the 
pore section is shown in red.  Buckling can occur through bending 
deformation of the fibers that define the circumference of the pore 
section (center image) or through sliding of the fibers relative to 
one another (rightmost image); either mechanism leads to 
expansion of the liquid volume exterior to the pore section, at the 
expense of the volume of the pore section itself.  Elastic 
compression would appear similar structurally to buckling, with 
the difference that the entire unfilled portion of the mat deforms 
homogeneously, affinely and in either 2 or 3 dimensions 

 
 
Pore A is a “blind” pore that does not provide a 
contiguous pathway from one side of the membrane 
to the other.  Such pores are measured by liquid 
intrusion porosimetry but not by liquid extrusion [1], 
but in any case are expected to be of little 
consequence in nonwoven fiber media.  Pores B and 
C are examples of “through” pores; B has a single 
constriction, while C is representative of pores with 
two or more constrictions, which results in the 
possibility of internal voids within the membrane that 
are accessible only via constrictions or “gateways”. 
By virtue of the fact that liquid intrusion proceeds 
from both sides of the membrane as pressure is 
increased, the liquid volume is measured for each 
segment of pore B as the pressure rises to a level 
sufficient to drive the liquid deeper into the pore.  
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Liquid extrusion porosimetry, on the other hand, 
relies on application of gas pressure to only one side 
of the wetted membrane, so that the liquid is extruded 
from the other side.  As a result, liquid volume is 
measured for each segment on the upstream side of 
the pore constriction as the pressure rises to a level 
sufficient to displace the liquid; however, once the 
pressure sufficient to extrude liquid from the smallest 
constriction (diameter D3 in Fig 1a) is reached, the 
downstream side of the pore is spontaneously 
emptied, thus leading to overestimation of the 
volume associated with pore segments of diameter 
D3.  Thus, liquid intrusion porosimetry is expected to 
provide a more accurate measure of the pore volume 
for both pore types A and B.   
 
Neither method measures correctly the volume 
associated with internal voids such as that illustrated 
by pore C; as the pressure rises to a level sufficient to 
intrude (or extrude) liquid from the smallest 
constriction (D3), the remaining cavity (diameter D1) 
fills spontaneously, again leading to overestimation 
of the volume associated with segments of diameter 
D3. This type of error appears to be intrinsic to liquid 
intrusion (extrusion) methods, and has been called 
the “ink bottle effect” [9].  The presence of such 
pores with internal voids can be estimated from the 
hysteresis in the liquid volume recovered as the 
system is depressurized.  Fig 1b illustrates the 
decomposition of a pore of type B into multiple pore 
sections (D,E,F) of uniform diameter and length 2l, 
as illustrated in Fig 1b; pores of Type A can be 
treated similarly. The deformation of membranes 
such as that shown in Fig 1b is dealt with in the next 
section.   
 
 
 
THEORY 
 
For purposes of characterizing its mechanical 
response to an applied pressure, the membrane is 
treated as a homogeneous, isotropic material with an 
effective Young’s modulus E and Poisson’s ratio ν.  
The bulk modulus of such a material is 
K E 3 12 . Under compression, the membrane 

may deform by two mechanisms: (i) pores buckle 
under the applied pressure, or (ii) the entire 
membrane deforms elastically. We consider both 
mechanisms here. 
 
The Buckling-Intrusion Transition 
 
In this case, we assume that the pores in Fig 1b may 
be approximated by thin cylindrical shells of 
thickness t and diameter D.  Such shells may buckle 

under axial or radial loading.  Here we consider the 
case of uniform external pressure (radial loading) that 
leads to radial collapse of the cylinder.  Fig 1c 
illustrates what such a radial collapse might look like 
in a fibrous material, for a particularly simplified 
pore section in which the “cylinder” is defined by 
only four fibers.  Whether the collapse occurs 
through bending of the fibers or the sliding of fibers 
relative to one another is not essential for this 
analysis, since both are reflected in the effective 
Young’s modulus E for the membrane; in reality, 
some combination of the two is likely.  For 
simplicity, we consider here the limit of l/D>>1, 
although the equation for radial buckling of a ring, 
applicable for l/D<<1, differs only by a constant 
prefactor [10].  The buckling pressure is given by 
[11]: 
 

Pb 
E

4

2 t

D






3

          (2) 

 
The buckling pressure Pb scales as the -3 power of 
pore diameter according to Eq. (2), whereas the 
intrusion pressure Pi scales as the -1 power of pore 
diameter according to Eq. (1), so there exists a 
critical pressure Pc below which pores tend to buckle 
rather than fill by liquid intrusion.  Equating Pi and 
Pb, we can solve for the critical diameter Dc and 
pressure at which this buckling-intrusion transition 
occurs: 
 

Dc  2Et 3  1/2          (3) 

 

Pc  3 2Et3 1/2
         (4) 

 
Significantly, if buckling occurs due to loads 
transmitted throughout membrane, it may occur 
anywhere within the membrane and is not subject to 
the type of error associated with intrusion through a 
constriction, as illustrated by pore C in Fig 1a.  
Regardless whether the pore buckles or fills by 
intrusion, the volume of liquid measured by the 
intrusion porosimetry experiment is assumed to be 
the same; for purposes of illustration, we assume that 
the volume is cylindrical, in accord with Fig 1a, i.e.  
V  D2l 4 , but other forms for V(D) are also 

conceivable. Thus, for a single pore, one can write 
the volume of liquid measured during the intrusion 
experiment as a function of pressure as follows: 
 

v P  V P ' P* dP '
0

P

          (5) 

 



where P* is the buckling pressure for P<Pc, or the 
intrusion pressure for P≥Pc.  Eq. (5) can be 
generalized for a distribution of pores, ρ(D), defined 
such that: 
 

 D dD
0



  1             (6) 

 
Given a distribution of pore sizes, v(P) is the 
cumulative volume of liquid measured as a function 
of pressure during the porosimetry experiment: 
 

v P   D V D  
dD

dP '






dP '
0

P

          (7) 

 
where 
 


d D

d P







2 t

3 P

E

4 P






1 / 3


D

3 P

fo r P  Pc

(b u c k lin g )


P 2


D

P

fo r P  Pc

( in tru s io n )











   

            (8) 
 
The log differential volume measured as a function of 
P can be written: 
 
dv P 
d log P

  D V D  
dD

dP






P         (9) 

 
Alternatively, the log differential volume can be 
expressed in terms of the equivalent capillary 
diameter Deq, where care in nomenclature is taken to 
distinguish between the true pore diameter measured 
by buckling at a pressure P and the equivalent 
diameter that would be inferred assuming the pore 
filled by intrusion at this same pressure. 
 
dv Deq 
d log Deq

  Deq V Deq Deq 
dv P 
d log P

      (10) 

 
Within the limitations of applicability of Eq. (1) for 
intrusion and Eq. (2) for buckling, the resulting pore 
size distribution can be measured over the entire 
range of pressure.  Other modes of buckling may also 
be considered in lieu of Eq. (2), depending on the 
nature of the porous medium. In their studies of 
xerogels and aerogels, Pirard et al [7] proposed a 
model based on Euler buckling of a cubic cage-like 
structure such as that used to describe the elastic 
properties of open cell foams [12].  In that model, 
Pn2EI D4  and I  t 4 64 (using the current 

nomenclature). Similar equations can also be written 

for axial buckling of a cylindrical shell (or buckling 
of a spherical shell [11]: 
 
  P  2 E 3  3v 2 1/ 2

2 t / D 2 . 
  
Each of these is straightforward to implement within 
the current analysis, starting with the replacement of 
Eq. (2).  Each leads to a different dependence of pore 
diameter on pressure in the buckling regime.    In the 
absence of an independent method like nitrogen 
absorption [7] to determine this relationship for pores 
on the order of microns or larger, we adopt here the 
radial cylindrical buckling model as being most 
representative of the geometry of electrospun 
nonwovens, with the understanding that it is 
illustrative of the approach; we defer further 
discrimination between buckling models to a 
subsequent study. 
 
 
Elastic compression-Intrusion 
 
In this case, we assume that as the liquid pressure is 
increased, the membrane deforms elastically with 
bulk modulus K, but that the volume lost occurs 
solely through reduction in volume of the unfilled 
pores in the membrane.  A deformed pore fills 
spontaneously when its intrusion pressure is reached.  
Note that pores that have already filled with liquid 
are at the same pressure as the external liquid and 
thus do not undergo further compression.  Thus, the 
resulting model is one wherein pores initially deform 
under applied pressure until the pressure is reached at 
which they spontaneously fill by capillary intrusion; 
once filled, these pores do not undergo any further 
elastic deformation. 
 
Upon compression, a membrane that deforms 
elastically and isotropically does so according to the 
following equation: 
 

dP  K dV V         (11) 

 
from which one obtains 
 
Ve  V0 exp P K         (12) 

 
where V0 is the original volume of the pore. 
 
Importantly, there exists a critical pore size below 
which elastic compression of the pore decreases its 
diameter faster than its intrusion pressure is 
approached.  Such pores never fill by capillary 
intrusion.  That this is the case can be seen by 
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plotting as a function of pressure the diameter of a 
pore with initial diameter D0 and the intrusion 
diameter Di according to Eq. (1).  For D0<D0,c, the 
curves do not intersect, which indicates that such 
pores never realize the pressure required to fill them 
by capillary intrusion. D0,c and the critical pressure Pc 
above which intrusion ceases to occur are identified 
with the D0 curve that lies tangent to Eq. (1).  To find 
this, we equate the elastic compression diameter De 
with the intrusion diameter Di, as well as their first 
derivatives with respect to pressure.  For this 
purpose, we must first rewrite Eq. (12) in terms of 
diameter.  If the pores have volume V  D2l 4 , we 

obtain: 
 
De  D0 exp P nK        (13) 

 
where 2≤n≤3 is the dimensionality of elastic 
deformation: for pores that deform such that l 
remains constant, n=2, whereas for pores that deform 
such that the aspect ratio l/D of the pore remains 
constant, n=3.  In the analysis that follows, we have 
used n=3. 
 
Next, equating Di and De and their first derivatives 
with respect to pressure, and solving for Pc and D0,c, 
we obtain: 
 
Pc  nK         (14) 

D0,c  e1 nK         (15) 

 
Now, for a single pore of volume V0, one can write: 
 

v(P)  V0 K 1 exp P ' K dP '
0

P







 exp P ' K  P ' P* dP '
0

P







    (16) 

 
The first term represents the volume of liquid 
measured as the membrane deforms elastically.  As in 
the case of buckling, this volume is not subject to the 
same error associated with intrusion into a pore of 
geometry C in Fig 1a, since the pore deforms 
affinely.  In contrast to buckling, elastic deformation 
should also be reversible and not give rise to 
hysteresis during a pressurization/depressurization 
cycle.  The second term represents the volume of 
liquid that actually intrudes into the (deformed) pore, 
so long as P*=Pi<Pc. 
 
For a distribution of pores such as that described by 
Eq. (6), it is necessary to realize that V0 becomes a 
function of pressure, as the largest pores are 

sequentially filled with liquid. In the study of 
aerogels, an empirical power law for modulus as a 
function of extent of compression during porosimetry 
was invoked [6]. Interestingly, it was subsequently 
proposed that the power law relation between 
modulus and density in such aerogels may be 
explained as a consequence of the buckling behavior 
described above [13].  In our model, the increasing 
effective stiffness of the material is solely a 
consequence of intrusion of liquid into some fraction 
of the pores of the material, which is accounted for 
by the reduction in unfilled, compressible pore 
volume with increasing pressure.  By equating Di 
from Eq. (1) with De from Eq. (13), we obtain an 
equation for the original diameter of pores that are 
filled by intrusion at a given pressure, valid up to 
P=Pc: 
 

D0 P 

P

exp
P

nK






P  Pc

D0,c P  Pc







       (17) 

 
All pores smaller than D0(P) remain unfilled at 
pressure P.  Thus, we define the original volume of 
pores that remain unfilled up to a pressure P: 
 

Vunf P   D ' 
0

D0 P 

 V D ' dD '       (18) 

 
For the cumulative volume of liquid measured during 
the liquid intrusion experiment, we write: 
 

v(P)  Vunf P ' K 1 exp P ' K dP '
0

P



  D0 V D0  
dD0

dP '






exp P ' K  P ' P* dP '
0

P


            (19) 
 
where  
 


dD0

dP
 D0

1

nK


1

P






       (20) 

 
from Eq. (17), and in the second term P*≤Pc.  Finally, 
the log differential volume measured as a function of 
P becomes: 
 

Journal of Engineered Fibers and Fabrics  http://www.jeffjournal.org 
Volume 4, Issue 3 - 2009 

5



dv P 
d log P

 Vunf P  P

K
exp 

P

K






 D0 V D0 
dD0

dP












P exp 
P

K






 

        (21) 

where the matrix A(P,D) is obtained from Eq. (9) or 
Eq. (21) for the cases of buckling-intrusion transition 
or elastic compression with intrusion, respectively.  
The vector dv(P)/dlogP is easily obtained from v(P)  
vs P by numerical differentiation using 2-point or 3-
point formulas. 
 Measurements of v(P) and dv(P)/dlogP are readily 

available from liquid intrusion experiments.  Analysis 
of these data using Eq. (7) and Eq. (9), for the 
buckling-intrusion case, or Eq. (19) and Eq. (21), for 
the elastic compression-intrusion case, allows us to 
determine the relative importance of the two 
deformation mechanisms and to quantify correctly 
the pore volume (or size) distribution in the presence 
of deformation. 

For the buckling-intrusion transition, A(P,D) is 
diagonal, since the volume associated with a pore of 
size D is measured entirely at a pressure P, dependent 
only on whether the mechanism is one of buckling or 
intrusion.  The solution is straightforward: 
 

 D V (D)  
dv P  d log P expt

dD dP P
       (23) 

  
Solution method where [-dD/dP] is obtained from Eq. (8) and D is 

obtained from Eq. (1) or Eq. (2) for P>Pc (intrusion) 
and P<Pc (buckling), respectively. 

 
The liquid intrusion experiment generates data for the 
cumulative volume of liquid that enters the sample 
cell as a function of pressure.  Since it cannot 
distinguish whether the liquid intrudes into pores of 
the sample or replaces volume of the sample lost 
through deformation, it is desirable to correct the data 
for possible buckling and/or elastic compression 
before interpreting the results in terms of a pore 
volume distribution or a pore size distribution.  This 
is readily done using the theory outlined above.  
Given a set of data for v(P) versus P, the goal is to 
solve for the joint function ρ(D)V(D), which 
corresponds to the pore volume distribution; if the 
function V(D) is known explicitly, one can further 
solve for the pore size distribution ρ(D).  It is 
convenient to formulate the problem generically as a 
set of linear equations: 

 
 
For the case of intrusion accompanied by elastic 
compression, we encounter the problem that the 
equation for isotropic compression does not permit us 
to distinguish pores of one size from another.  Thus, 
only for pressures less than Pc, where liquid actually 
intrudes into pores, can the corresponding pore size 
distribution be determined.  Thus, for soft materials 
in the presence of elastic deformation, there is an 
intrinsic limitation to the liquid intrusion experiment: 
the distribution of pores smaller than D0,c (Eq. 15) 
cannot be characterized.  Nevertheless, the 
distribution of pores larger than D0,c can still be 
extracted.  First, we limit the values of P for which 
Eq. (22) is solved to those where P<Pc, according to 
Eq, (14).  Next, we expand Eq. (18) numerically in 
terms of ρ(D0): 

 

A P,D   D V D  dv P  dlogP0        (22) 

  
 

 
_____________________________________________________________________________________________ 
 
 

 D ' V D ' dD '
0

D0 P 

 
1

2
 D0,c V D0,c  D0,c  D0, j 2 


1

2
 D0, j V D0, j  D0, j1  D0, j1 

j 2

n1




1

2
 D0 P  V D0 P   D0 P  D0, j n1 

         (24) 

 
 
_____________________________________________________________________________________________ 
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where the integration runs from D0,c to D0(P) in n-1 
intervals.  Finally, we construct the matrix A(P,D) as 
follows: 
 

Aii Pi , Di  1

2
D0,i  D0,i1 

 dD0 dP i Pi exp Pi K 
Ai,i jn Pi , Dj  1

2
D0, j1  D0, j1 

Ai,n Pi , Dn  1

2
D0,n  D0,n1        (25) 

 
The resulting A matrix is upper triangular and can be 
solved by back substitution to obtain ρ(D0)V(D0). 
 
 
 
RESULTS AND DISCUSSION 
 
Model System   
 
In this section, we explore the consequences of both 
deformation modes for a model system, in order to 
recognize their signature features.  We first consider 
the case for the buckling-intrusion transition. For 
purposes of illustration, we assume a membrane with 
Young’s modulus E=100 MPa, and Poisson’s ratio 
ν=0.3.  For the shell thickness, t, a value equal to the 
fiber diameter seems the most reasonable 
approximation.  These values are chosen primarily 
for illustrative purposes, but are believed to be 
representative of electrospun nonwoven mats.  For 
mercury, with θ=140° and γ=0.48 N/m, α= 1.47 N/m.  
All volumes are normalized to a total pore volume of 
1.0, so the characteristic length l is fixed for a given 
pore size distribution, according to: 
 

Vtotal

l


4


 D D2dD

0



                       (26) 

 
Fig. 2 illustrates the crossover from buckling to 
intrusion at the critical pressure for four different 
shell thicknesses or fiber diameters: t=20 µm, 2 µm, 
1.2 µm and 0.2 µm.  As the fiber diameter decreases, 
buckling of the cylindrical pore persists to higher 
pressures.  
  
To illustrate the effects of shell thickness, or fiber 
diameter, on liquid volume measurements, we 
consider a prototypical log normal pore size 
distribution given by Eq. (27) and shown in Fig. 3: 
 

 
FIGURE 2.  Pore diameter vs pressure scaling for liquid intrusion 
according to eq (1) (thick solid line) and for buckling of cylindrical 
shells according to eq 2 for four shell thicknesses: t=20 µm 
(dashed line); 2 µm (dotted line); 1.2 µm (dash-dot line); 0.2 µm 
(thin solid line).  The corresponding transition pressures Pc are: 
1.38, 44.9, 96.0 and 718 kPa, respectively.  The transition 
diameters are: 1043, 33.0, 15.3 and 1.0 µm, respectively. 

 
 
 

 D  1

D 2
exp 

log D  
2







2











               (27) 

 
with μ=log(12) and σ=0.5.   Fig 4(a) shows the 
cumulative volume distribution v(P) given by Eq. (7) 
and Eq. (8), for the same four fiber diameters.  For 
the given mechanical properties of the mat, the 
largest fibers (20 µm diameter) exhibit a transition 
from buckling to liquid intrusion around Dc=1043 
µm, which is in the high end tail of the pore size 
distribution; for these fibers, essentially all of the 
liquid volume is measured during intrusion.  For the 
2 µm and 1.2 µm fibers, the transition occurs around 
Dc=33 and 15.3 µm, respectively, well within the 
important range of pores sizes. Both curves exhibit a 
low pressure tail that is less steep than the intrusion 
curve, indicative of the buckling phenomenon.  The 
smallest fibers (0.2 µm) transition around Dc=1.0 µm, 
which is below the relevant pore size range; 
essentially all of the liquid volume is measured 
during buckling in this case.  Applying Eq. (1) to this 
data would yield a gross overestimate of the true pore 
size distribution.  That this is the case can be clearly 
seen by converting the volume data into a log 
differential intrusion volume vs equivalent capillary 
diameter, according to Eq. (10); the results of this are 
shown in Fig 4(b).  The pore size distribution is 
correctly described only for the largest, 20 µm fibers. 
The 2 µm fibers show a sharp peak at the correct 
diameter, but a long tail on the high end of the 
distribution.  The 1.2 µm fibers apparently show a 
bimodal pore size distribution, with the maximum 
actually due to the buckling-intrusion transition itself; 
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neither peak corresponds to the true peak of the pore 
size distribution.  
 

 
 
FIGURE 3.  A prototypical log normal pore size distribution, ρ(D) 
(squares).  Also shown is the pore volume distribution (filled 
circles).  Note that the pore volume distribution is necessarily 
shifted toward larger diameter. 
 
 
 

 
 
 
FIGURE 4. (a) cumulative volume v(P) versus pressure.  (b) log 
differential volume dV/dlogD versus equivalent capillary diameter, 
usually assumed during a liquid intrusion experiment.  In both 
plots, 20 µm fibers (squares), 2 µm fibers (circles), 1.2 µm fibers 
(triangles) and 0.2 µm fibers (inverted triangles).  
  

Finally, the smallest 0.2 µm fibers show an 
artificially broadened pore size distribution that is 
furthermore shifted upward in pore size by almost 

three orders of magnitude. These cases demonstrate 
just how critical it is to account for buckling of pores 
during liquid intrusion measurements when it occurs. 
 
Next, we consider the case in which elastic 
compression accompanies intrusion. Fig 5 shows the 
results of the preceding example for E=100 MPa and 
also for E=0.1 MPa.  In the case of higher modulus, 
the cumulative volume versus pressure profile is 
imperceptibly different from the intrusion profile. 
The critical diameter Dc below which intrusion does 
not occur is 0.016 µm, too low to affect the 
measurement noticeably.  However, upon reduction 
of modulus by three orders of magnitude, the effect 
of elastic compression becomes significant. As in the 
case of buckling, the cumulative volume curve 
exhibits a low pressure tail that is considerably 
extended relative to that associated with intrusion 
alone.  The total cumulative volume is also 
measurably less, since Dc increases to 16 µm, and a 
significant fraction of the pores never undergo 
intrusion.  Also shown in Fig 5a are the individual 
contributions to cumulative volume v(P) associated 
with compression of the mat and with intrusion into 
the pores of the mat, respectively.  It is apparent that 
elastic compression begins at much lower pressures 
than intrusion, and ultimately accounts for 75% of the 
total liquid volume measured in this example.  Fig. 
5b shows the differential volume versus equivalent 
capillary diameter curve for both E=100 MPa and for 
E=0.1 MPa.  While the higher modulus membrane 
provides a faithful measure of the true pore size 
distribution, the lower modulus membrane is shifted 
to larger pore diameter and exhibits a high pore 
diameter tail. The peak shift in this case is relatively 
modest.  From these results, we conclude that for the 
range of fiber sizes and pore sizes typical of 
electrospun nonwoven membranes, buckling is likely 
to be more important than elastic compression, since 
it gives the larger effect for materials in the relevant 
range of Young’s modulus. 
 
Experimental System 
 
Analysis is reported here for three electrospun 
nonwoven samples of poly(ε-caprolactone) (PCL) 
fibers with average fiber diameters that vary over an 
order of magnitude.  The apparatus and methods used 
for the production of these samples were the same as 
reported previously [14,15]. The solution and process 
conditions for each sample are summarized in Table 
1. Representative SEM images (JSM-6060, JEOL 
Ltd, Tokyo, Japan) of the three samples are shown in 
Fig 6. The corresponding fiber sizes, determined  
from the SEM micrographs by measuring diameters 
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FIGURE 5.  (a) cumulative volume versus pressure.  E=100 MPa 
(filled squares). E=0.1 MPa (circles); partial volume measured due 
to intrusion (inverted triangles); partial volume measured due to 
elastic compression (triangles).  (b) log differential volume 
dV/dlogD versus equivalent capillary diameter for E=100 MPa 
(squares) and for E=0.1 MPa (circles). 

 
 
of 40 to 60 fibers from both sides of the sample using 
the analySIS v3.2 software (Software Imaging 
Systems. Münster, Germany), are 2.49±0.82, 
6.50±0.57 and 18.0±1.9 µm.  Mercury porosimetry 
was performed using an Autopore IV porosimeter 
(Micromeritics, Norcross, GA).  
 
Rectangular samples approximately 1 cm x 2 cm in 
dimension were inserted into the penetrometer, and 

care was taken to ensure that the entire sample 
surface was accessible to the mercury.  The 
penetrometer was filled initially at 3500 Pa, and the 
threshold for equilibrium intrusion rate was set to 
0.03 μl/g/s to ensure equilibration at each pressure.  
Information regarding each sample and results of the 
analysis are provided in Table 2. Fig. 7 shows the 
typical result of mercury porosimetry for the 6.50 µm 
fiber sample. From the total volume of mercury 
measured during the experiment, a sample porosity of 
0.83 was determined.  This value is in good 
agreement with a porosity of 0.82 determined 
gravimetrically from the area density of the sample, 
the thickness of the mat and a PCL density of 1.145 
g/cm3, corresponding to 40% crystallinity.   
 
Qualitatively similar porosimetry data have been 
reported for other electrospun materials [3,4] and for 
xerogels [8,16].  Each of these cases are characterized 
by an abrupt change in slope of v(P) versus P in the 
raw porosimetry data, which is indicative of the 
transition from buckling to intrusion.  In Fig 7 this 
occurs around Pc=4.8104 Pa. To confirm that this 
pressure corresponds to a transition from sample 
deformation to liquid intrusion, we performed a 
second series of experiments in which this sample 
was pressurized in the porosimeter to an intermediate 
pressure and then depressurized, after which the 
sample was reweighed.  For intermediate pressures 
less than 5104 Pa, the sample weight after the 
pressurization/depressurization cycle was essentially 
unchanged from the original weight. We also 
observed considerable hysteresis in the v(P) vs P 
curve for pressurization-depressurization cycle at 
intermediate pressures less than 5104 Pa. Taken 
together, these two observations indicate that the 
volume of mercury measured below 5104 Pa 
corresponds predominantly to an irreversible process 
that does not involve intrusion of mercury, i.e. 
buckling deformation.  For intermediate pressures 
greater than 5104 Pa, the sample weight increases 
dramatically with increasing pressure, indicative of 
mercury intrusion into the sample at higher pressure.  
Hysteresis was again observed, but it was not as 
significant as at the lower pressures. 

 
 
 
 
 
 
 
 
 



TABLE I: Solution and Process Conditions  
 Sample #1 Sample #2 Sample #3 
PCL solute (w/w) 11% 20% 15% 
Solvent composition 
(CHCl3:CH3OH) 

3:1 3:1 1:0 

Flow rate (ml/min) 0.1 0.1 0.2 
Applied voltage (kV) 32.8 37.8 37.5 
Spin distance (cm) 40 42 55 
 
 
TABLE II:  Results for Electrospun Poly(ε-caprolactone) Nonwoven Membranes 
 Sample #1 Sample #2 Sample #3 
Fiber diameter (µm) 2.49±0.82 6.50±0.57 18.0±1.9 
Area density (g/cm2) 0.01289 0.01938 0.00676 
Thickness (mm) 0.852±0.038 1.004±0.041 0.700±0.040 
Hg volume (ml/g) 5.04 4.50 5.05 
Porosity (porosimetry) 0.842 0.834 0.843 
Porosity (gravimetric) 0.857 0.818 0.828 
Pc

 (kPa) (a) 170 48 17 
Dc (µm) (b) 8.5 30 85 
Eeff (MPa) (c) 3.5 2.5 0.9 
E (MPa) (d) 15.1±1.2 10.2±0.6 17.1±1.3 
Vol. ave. pore diameter (µm) (e) 12±6.7 27±13 78±26 
Area ave. pore diameter (µm) (f) 7.9±5.8 20±12 65±29 
Size ave. pore diameter (µm) (g) 5.3±3.7 5.0±8.6 50±27 

(a) applied pressure at buckling/intrusion transition; (b) pore diameter at buckling/intrusion transition; (c) effective sample 
modulus, determined from buckling/intrusion transition; (d) sample modulus from tensile measurement; (e) average pore 
diameter and standard deviation, from pore volume distribution; (f) average pore diameter and standard deviation, from pore area 
distribution.  For pores comprised of cylindrical sections, this average is equal to 4V/S, where V is the total pore volume and S is 
the total pore area; (g) average pore diameter and standard deviation, from pore size distribution. 

 

  
 
 
FIGURE 6.  Scanning electron micrographs of PCL nonowoven fiber samples.  
(a) Sample #1 (t=2.49 µm); (b) Sample #2 (t=6.50 µm); (c) Sample #3 (t=18.0 µm). All scale bars are 50 µm. 
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FIGURE 7.  Mercury porosimetry results for a typical electrospun 
nonwoven mat.  PCL fibers, average fiber diameter: 6.50 µm.  Raw 
data for mercury volume v(P) versus the logarithm of pressure 
logP (filled black squares); log differential intrusion volume 
dv(P)/dlogP vs logP: (open circles). 

 
 
Using this experimentally observed value of Pc and 
the average fiber diameter of 6.50 µm from SEM, we 
can estimate via Eq. (4) the effective elastic modulus, 
Eeff, of the mat to be 2.5 MPa.  Similar analysis for 
the other two samples yields Eeff equal to 3.5 MPa 
and 0.9 MPa for the samples having fiber diameters 
of 2.49 and 18.0 µm, respectively. These values of 
Eeff are about 1/4 of the elastic moduli, E, measured 
for the same nonwoven mats under tensile 
deformation (Zwick, 3-5 cm sample gauge length, 
0.001 s-1 strain rate).  However, they are comparable 
to the moduli reported previously by others for 
nonwoven mats of electrospun PCL fibers in the 
diameter range 200-700 nm [17,18].  The quantitative 
discrepancies between Eeff and E are likely due to the 
simplicity of the buckling model and our assumption 
that the shell thickness t is equal to the average fiber 
diameter. 
 
Fig 8 shows the pore volume distribution ρ(D)V(D) 
obtained for the 6.50 µm fiber sample using Eq. 23 
for the buckling-intrusion transition.  The average 
and standard deviation of the distribution is 27±13 
µm. Assuming the pores are comprised of segments 
with volume V(D)~D2, we obtain a pore size 
distribution with average and standard deviation of 
5.0±8.6 µm for this sample, indicative of a highly 
skewed distribution.  We find that the determination 
of pore size distribution in our data is subject to 
substantial noise in the count of pores below 5 µm, 
due to the small sample sizes used; these in turn were 
limited by the size of the penetrometer bulb available 
for this work.  For this reason, the pore size 
distribution tends to exhibit multiple peaks and is 
believed to be less accurate than the pore volume 

distribution here. Results for the other two samples 
are provided in Table 2.   
 
From these results, it is evident that the average 
diameter of a pore increases in proportion to fiber 
size, in accord with the relatively small variation in 
overall porosity between samples. Also shown in Fig 
8 is the pore volume distribution plotted versus the 
equivalent capillary diameter, i.e. the distribution 
obtained if one assumes that no buckling occurs.  The 
latter suggests that there is a discontinuity in the pore 
volume distribution around D=30 µm and that there 
exists a broad tail in the distribution that persists up 
to pores having diameters 100-300 µm; upon 
correction for deformation, both of these features are 
determined to be spurious.  The large diameter pores, 
in particular, are inconsistent with SEM observations 
(c.f. Fig. 6).  Analysis of the porosimetry data using 
the elastic compression-intrusion model with a 
Young’s modulus on the order of 1 MPa indicates 
that elastic compression has little effect on the 
measured pore volume distribution for this sample. 
 

 
 
FIGURE 8.  Pore volume distribution for a PCL mat with average 
fiber diameter of 6.50 µm.  Data corrected for buckling/intrusion 
transition (filled circles); Uncorrected results assuming 
applicability of the Washburn equation over the entire pressure 
range (open squares). 

 
 
CONCLUSIONS 
 
A theory for the determination of pore diameter 
distributions by liquid intrusion porosimetry in the 
presence of radial buckling of the pores or elastic 
compression of the sample has been presented here. 
The theory is developed with the specific case of 
nonwoven fibrous media in mind, but is otherwise 
quite general, and can be incorporated as part of any 
analysis of porous media by liquid intrusion 
porosimetry. We find that irreversible buckling of the 
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pores is likely to be more important than the 
reversible elastic compression of the electrospun 
fiber mat during the typical mercury porosimetry 
experiment. 
  
These results indicate that deformation of the sample 
must be taken into consideration when determining 
the pore diameter distribution of fibrous mats 
comprised of small diameter (<10 µm) polymer 
fibers.  Failure to do so can lead to erroneous 
conclusions regarding pore diameters and their 
dependence on sample preparation conditions.  This 
is especially critical at the present time, when 
electrospinning is being widely used to produce 
nonwoven fiber mats with fiber diameters below 10 
µm, and to modify their pore size distribution [19-
22].  Recent attempts to characterize the porosity or 
pore size distribution of such materials may merit 
reconsideration in light of these results [3,4,23-25].  
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